Class: Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/aiplatform_v1beta1/classes.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics

Returns a new instance of GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics.



21418
21419
21420
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 21418

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#confidence_thresholdFloat

Metrics are computed with an assumption that the Model never returns predictions with score lower than this value. Corresponds to the JSON property confidenceThreshold

Returns:

  • (Float)


21327
21328
21329
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 21327

def confidence_threshold
  @confidence_threshold
end

#confusion_matrixGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsConfusionMatrix

Confusion matrix of the evaluation for this confidence_threshold. Corresponds to the JSON property confusionMatrix



21332
21333
21334
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 21332

def confusion_matrix
  @confusion_matrix
end

#f1_scoreFloat

The harmonic mean of recall and precision. For summary metrics, it computes the micro-averaged F1 score. Corresponds to the JSON property f1Score

Returns:

  • (Float)


21338
21339
21340
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 21338

def f1_score
  @f1_score
end

#f1_score_at1Float

The harmonic mean of recallAt1 and precisionAt1. Corresponds to the JSON property f1ScoreAt1

Returns:

  • (Float)


21343
21344
21345
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 21343

def f1_score_at1
  @f1_score_at1
end

#f1_score_macroFloat

Macro-averaged F1 Score. Corresponds to the JSON property f1ScoreMacro

Returns:

  • (Float)


21348
21349
21350
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 21348

def f1_score_macro
  @f1_score_macro
end

#f1_score_microFloat

Micro-averaged F1 Score. Corresponds to the JSON property f1ScoreMicro

Returns:

  • (Float)


21353
21354
21355
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 21353

def f1_score_micro
  @f1_score_micro
end

#false_negative_countFixnum

The number of ground truth labels that are not matched by a Model created label. Corresponds to the JSON property falseNegativeCount

Returns:

  • (Fixnum)


21359
21360
21361
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 21359

def false_negative_count
  @false_negative_count
end

#false_positive_countFixnum

The number of Model created labels that do not match a ground truth label. Corresponds to the JSON property falsePositiveCount

Returns:

  • (Fixnum)


21364
21365
21366
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 21364

def false_positive_count
  @false_positive_count
end

#false_positive_rateFloat

False Positive Rate for the given confidence threshold. Corresponds to the JSON property falsePositiveRate

Returns:

  • (Float)


21369
21370
21371
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 21369

def false_positive_rate
  @false_positive_rate
end

#false_positive_rate_at1Float

The False Positive Rate when only considering the label that has the highest prediction score and not below the confidence threshold for each DataItem. Corresponds to the JSON property falsePositiveRateAt1

Returns:

  • (Float)


21375
21376
21377
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 21375

def false_positive_rate_at1
  @false_positive_rate_at1
end

#max_predictionsFixnum

Metrics are computed with an assumption that the Model always returns at most this many predictions (ordered by their score, descendingly), but they all still need to meet the confidenceThreshold. Corresponds to the JSON property maxPredictions

Returns:

  • (Fixnum)


21382
21383
21384
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 21382

def max_predictions
  @max_predictions
end

#precisionFloat

Precision for the given confidence threshold. Corresponds to the JSON property precision

Returns:

  • (Float)


21387
21388
21389
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 21387

def precision
  @precision
end

#precision_at1Float

The precision when only considering the label that has the highest prediction score and not below the confidence threshold for each DataItem. Corresponds to the JSON property precisionAt1

Returns:

  • (Float)


21393
21394
21395
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 21393

def precision_at1
  @precision_at1
end

#recallFloat

Recall (True Positive Rate) for the given confidence threshold. Corresponds to the JSON property recall

Returns:

  • (Float)


21398
21399
21400
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 21398

def recall
  @recall
end

#recall_at1Float

The Recall (True Positive Rate) when only considering the label that has the highest prediction score and not below the confidence threshold for each DataItem. Corresponds to the JSON property recallAt1

Returns:

  • (Float)


21405
21406
21407
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 21405

def recall_at1
  @recall_at1
end

#true_negative_countFixnum

The number of labels that were not created by the Model, but if they would, they would not match a ground truth label. Corresponds to the JSON property trueNegativeCount

Returns:

  • (Fixnum)


21411
21412
21413
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 21411

def true_negative_count
  @true_negative_count
end

#true_positive_countFixnum

The number of Model created labels that match a ground truth label. Corresponds to the JSON property truePositiveCount

Returns:

  • (Fixnum)


21416
21417
21418
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 21416

def true_positive_count
  @true_positive_count
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



21423
21424
21425
21426
21427
21428
21429
21430
21431
21432
21433
21434
21435
21436
21437
21438
21439
21440
21441
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 21423

def update!(**args)
  @confidence_threshold = args[:confidence_threshold] if args.key?(:confidence_threshold)
  @confusion_matrix = args[:confusion_matrix] if args.key?(:confusion_matrix)
  @f1_score = args[:f1_score] if args.key?(:f1_score)
  @f1_score_at1 = args[:f1_score_at1] if args.key?(:f1_score_at1)
  @f1_score_macro = args[:f1_score_macro] if args.key?(:f1_score_macro)
  @f1_score_micro = args[:f1_score_micro] if args.key?(:f1_score_micro)
  @false_negative_count = args[:false_negative_count] if args.key?(:false_negative_count)
  @false_positive_count = args[:false_positive_count] if args.key?(:false_positive_count)
  @false_positive_rate = args[:false_positive_rate] if args.key?(:false_positive_rate)
  @false_positive_rate_at1 = args[:false_positive_rate_at1] if args.key?(:false_positive_rate_at1)
  @max_predictions = args[:max_predictions] if args.key?(:max_predictions)
  @precision = args[:precision] if args.key?(:precision)
  @precision_at1 = args[:precision_at1] if args.key?(:precision_at1)
  @recall = args[:recall] if args.key?(:recall)
  @recall_at1 = args[:recall_at1] if args.key?(:recall_at1)
  @true_negative_count = args[:true_negative_count] if args.key?(:true_negative_count)
  @true_positive_count = args[:true_positive_count] if args.key?(:true_positive_count)
end