Class: Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1FeatureViewVectorSearchConfig

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/aiplatform_v1beta1/classes.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb

Overview

Deprecated. Use IndexConfig instead.

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1FeatureViewVectorSearchConfig

Returns a new instance of GoogleCloudAiplatformV1beta1FeatureViewVectorSearchConfig.



9485
9486
9487
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 9485

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#brute_force_configGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1FeatureViewVectorSearchConfigBruteForceConfig

Optional. Configuration options for using brute force search, which simply implements the standard linear search in the database for each query. It is primarily meant for benchmarking and to generate the ground truth for approximate search. Corresponds to the JSON property bruteForceConfig



9445
9446
9447
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 9445

def brute_force_config
  @brute_force_config
end

#crowding_columnString

Optional. Column of crowding. This column contains crowding attribute which is a constraint on a neighbor list produced by FeatureOnlineStoreService. SearchNearestEntities to diversify search results. If NearestNeighborQuery. per_crowding_attribute_neighbor_count is set to K in SearchNearestEntitiesRequest, it's guaranteed that no more than K entities of the same crowding attribute are returned in the response. Corresponds to the JSON property crowdingColumn

Returns:

  • (String)


9455
9456
9457
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 9455

def crowding_column
  @crowding_column
end

#distance_measure_typeString

Optional. The distance measure used in nearest neighbor search. Corresponds to the JSON property distanceMeasureType

Returns:

  • (String)


9460
9461
9462
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 9460

def distance_measure_type
  @distance_measure_type
end

#embedding_columnString

Optional. Column of embedding. This column contains the source data to create index for vector search. embedding_column must be set when using vector search. Corresponds to the JSON property embeddingColumn

Returns:

  • (String)


9466
9467
9468
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 9466

def embedding_column
  @embedding_column
end

#embedding_dimensionFixnum

Optional. The number of dimensions of the input embedding. Corresponds to the JSON property embeddingDimension

Returns:

  • (Fixnum)


9471
9472
9473
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 9471

def embedding_dimension
  @embedding_dimension
end

#filter_columnsArray<String>

Optional. Columns of features that're used to filter vector search results. Corresponds to the JSON property filterColumns

Returns:

  • (Array<String>)


9476
9477
9478
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 9476

def filter_columns
  @filter_columns
end

#tree_ah_configGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1FeatureViewVectorSearchConfigTreeAhConfig

Optional. Configuration options for the tree-AH algorithm (Shallow tree + Asymmetric Hashing). Please refer to this paper for more details: https:// arxiv.org/abs/1908.10396 Corresponds to the JSON property treeAhConfig



9483
9484
9485
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 9483

def tree_ah_config
  @tree_ah_config
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



9490
9491
9492
9493
9494
9495
9496
9497
9498
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 9490

def update!(**args)
  @brute_force_config = args[:brute_force_config] if args.key?(:brute_force_config)
  @crowding_column = args[:crowding_column] if args.key?(:crowding_column)
  @distance_measure_type = args[:distance_measure_type] if args.key?(:distance_measure_type)
  @embedding_column = args[:embedding_column] if args.key?(:embedding_column)
  @embedding_dimension = args[:embedding_dimension] if args.key?(:embedding_dimension)
  @filter_columns = args[:filter_columns] if args.key?(:filter_columns)
  @tree_ah_config = args[:tree_ah_config] if args.key?(:tree_ah_config)
end