Class: Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1IndexDatapoint

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/aiplatform_v1beta1/classes.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb

Overview

A datapoint of Index.

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1IndexDatapoint

Returns a new instance of GoogleCloudAiplatformV1beta1IndexDatapoint.



11859
11860
11861
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 11859

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#crowding_tagGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1IndexDatapointCrowdingTag

Crowding tag is a constraint on a neighbor list produced by nearest neighbor search requiring that no more than some value k' of the k neighbors returned have the same value of crowding_attribute. Corresponds to the JSON property crowdingTag



11825
11826
11827
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 11825

def crowding_tag
  @crowding_tag
end

#datapoint_idString

Required. Unique identifier of the datapoint. Corresponds to the JSON property datapointId

Returns:

  • (String)


11830
11831
11832
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 11830

def datapoint_id
  @datapoint_id
end

#feature_vectorArray<Float>

Required. Feature embedding vector for dense index. An array of numbers with the length of [NearestNeighborSearchConfig.dimensions]. Corresponds to the JSON property featureVector

Returns:

  • (Array<Float>)


11836
11837
11838
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 11836

def feature_vector
  @feature_vector
end

#numeric_restrictsArray<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1IndexDatapointNumericRestriction>

Optional. List of Restrict of the datapoint, used to perform "restricted searches" where boolean rule are used to filter the subset of the database eligible for matching. This uses numeric comparisons. Corresponds to the JSON property numericRestricts



11843
11844
11845
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 11843

def numeric_restricts
  @numeric_restricts
end

#restrictsArray<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1IndexDatapointRestriction>

Optional. List of Restrict of the datapoint, used to perform "restricted searches" where boolean rule are used to filter the subset of the database eligible for matching. This uses categorical tokens. See: https://cloud.google. com/vertex-ai/docs/matching-engine/filtering Corresponds to the JSON property restricts



11851
11852
11853
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 11851

def restricts
  @restricts
end

#sparse_embeddingGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1IndexDatapointSparseEmbedding

Feature embedding vector for sparse index. An array of numbers whose values are located in the specified dimensions. Corresponds to the JSON property sparseEmbedding



11857
11858
11859
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 11857

def sparse_embedding
  @sparse_embedding
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



11864
11865
11866
11867
11868
11869
11870
11871
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 11864

def update!(**args)
  @crowding_tag = args[:crowding_tag] if args.key?(:crowding_tag)
  @datapoint_id = args[:datapoint_id] if args.key?(:datapoint_id)
  @feature_vector = args[:feature_vector] if args.key?(:feature_vector)
  @numeric_restricts = args[:numeric_restricts] if args.key?(:numeric_restricts)
  @restricts = args[:restricts] if args.key?(:restricts)
  @sparse_embedding = args[:sparse_embedding] if args.key?(:sparse_embedding)
end