Class: Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ModelDeploymentMonitoringJob

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/aiplatform_v1beta1/classes.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb

Overview

Represents a job that runs periodically to monitor the deployed models in an endpoint. It will analyze the logged training & prediction data to detect any abnormal behaviors.

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1ModelDeploymentMonitoringJob

Returns a new instance of GoogleCloudAiplatformV1beta1ModelDeploymentMonitoringJob.



15316
15317
15318
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15316

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#analysis_instance_schema_uriString

YAML schema file uri describing the format of a single instance that you want Tensorflow Data Validation (TFDV) to analyze. If this field is empty, all the feature data types are inferred from predict_instance_schema_uri, meaning that TFDV will use the data in the exact format(data type) as prediction request/ response. If there are any data type differences between predict instance and TFDV instance, this field can be used to override the schema. For models trained with Vertex AI, this field must be set as all the fields in predict instance formatted as string. Corresponds to the JSON property analysisInstanceSchemaUri

Returns:

  • (String)


15171
15172
15173
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15171

def analysis_instance_schema_uri
  @analysis_instance_schema_uri
end

#bigquery_tablesArray<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ModelDeploymentMonitoringBigQueryTable>

Output only. The created bigquery tables for the job under customer project. Customer could do their own query & analysis. There could be 4 log tables in maximum: 1. Training data logging predict request/response 2. Serving data logging predict request/response Corresponds to the JSON property bigqueryTables



15179
15180
15181
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15179

def bigquery_tables
  @bigquery_tables
end

#create_timeString

Output only. Timestamp when this ModelDeploymentMonitoringJob was created. Corresponds to the JSON property createTime

Returns:

  • (String)


15184
15185
15186
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15184

def create_time
  @create_time
end

#display_nameString

Required. The user-defined name of the ModelDeploymentMonitoringJob. The name can be up to 128 characters long and can consist of any UTF-8 characters. Display name of a ModelDeploymentMonitoringJob. Corresponds to the JSON property displayName

Returns:

  • (String)


15191
15192
15193
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15191

def display_name
  @display_name
end

#enable_monitoring_pipeline_logsBoolean Also known as: enable_monitoring_pipeline_logs?

If true, the scheduled monitoring pipeline logs are sent to Google Cloud Logging, including pipeline status and anomalies detected. Please note the logs incur cost, which are subject to Cloud Logging pricing. Corresponds to the JSON property enableMonitoringPipelineLogs

Returns:

  • (Boolean)


15199
15200
15201
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15199

def enable_monitoring_pipeline_logs
  @enable_monitoring_pipeline_logs
end

#encryption_specGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1EncryptionSpec

Represents a customer-managed encryption key spec that can be applied to a top- level resource. Corresponds to the JSON property encryptionSpec



15206
15207
15208
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15206

def encryption_spec
  @encryption_spec
end

#endpointString

Required. Endpoint resource name. Format: projects/project/locations/ location/endpoints/endpoint` Corresponds to the JSON propertyendpoint`

Returns:

  • (String)


15212
15213
15214
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15212

def endpoint
  @endpoint
end

#errorGoogle::Apis::AiplatformV1beta1::GoogleRpcStatus

The Status type defines a logical error model that is suitable for different programming environments, including REST APIs and RPC APIs. It is used by gRPC. Each Status message contains three pieces of data: error code, error message, and error details. You can find out more about this error model and how to work with it in the API Design Guide. Corresponds to the JSON property error



15222
15223
15224
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15222

def error
  @error
end

#labelsHash<String,String>

The labels with user-defined metadata to organize your ModelDeploymentMonitoringJob. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels. Corresponds to the JSON property labels

Returns:

  • (Hash<String,String>)


15231
15232
15233
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15231

def labels
  @labels
end

#latest_monitoring_pipeline_metadataGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ModelDeploymentMonitoringJobLatestMonitoringPipelineMetadata

All metadata of most recent monitoring pipelines. Corresponds to the JSON property latestMonitoringPipelineMetadata



15236
15237
15238
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15236

def 
  @latest_monitoring_pipeline_metadata
end

#log_ttlString

The TTL of BigQuery tables in user projects which stores logs. A day is the basic unit of the TTL and we take the ceil of TTL/86400(a day). e.g. second: 3600 indicates ttl = 1 day. Corresponds to the JSON property logTtl

Returns:

  • (String)


15243
15244
15245
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15243

def log_ttl
  @log_ttl
end

#logging_sampling_strategyGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SamplingStrategy

Sampling Strategy for logging, can be for both training and prediction dataset. Corresponds to the JSON property loggingSamplingStrategy



15248
15249
15250
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15248

def logging_sampling_strategy
  @logging_sampling_strategy
end

#model_deployment_monitoring_objective_configsArray<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ModelDeploymentMonitoringObjectiveConfig>

Required. The config for monitoring objectives. This is a per DeployedModel config. Each DeployedModel needs to be configured separately. Corresponds to the JSON property modelDeploymentMonitoringObjectiveConfigs



15254
15255
15256
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15254

def model_deployment_monitoring_objective_configs
  @model_deployment_monitoring_objective_configs
end

#model_deployment_monitoring_schedule_configGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ModelDeploymentMonitoringScheduleConfig

The config for scheduling monitoring job. Corresponds to the JSON property modelDeploymentMonitoringScheduleConfig



15259
15260
15261
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15259

def model_deployment_monitoring_schedule_config
  @model_deployment_monitoring_schedule_config
end

#model_monitoring_alert_configGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ModelMonitoringAlertConfig

The alert config for model monitoring. Corresponds to the JSON property modelMonitoringAlertConfig



15264
15265
15266
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15264

def model_monitoring_alert_config
  @model_monitoring_alert_config
end

#nameString

Output only. Resource name of a ModelDeploymentMonitoringJob. Corresponds to the JSON property name

Returns:

  • (String)


15269
15270
15271
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15269

def name
  @name
end

#next_schedule_timeString

Output only. Timestamp when this monitoring pipeline will be scheduled to run for the next round. Corresponds to the JSON property nextScheduleTime

Returns:

  • (String)


15275
15276
15277
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15275

def next_schedule_time
  @next_schedule_time
end

#predict_instance_schema_uriString

YAML schema file uri describing the format of a single instance, which are given to format this Endpoint's prediction (and explanation). If not set, we will generate predict schema from collected predict requests. Corresponds to the JSON property predictInstanceSchemaUri

Returns:

  • (String)


15282
15283
15284
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15282

def predict_instance_schema_uri
  @predict_instance_schema_uri
end

#sample_predict_instanceObject

Sample Predict instance, same format as PredictRequest.instances, this can be set as a replacement of ModelDeploymentMonitoringJob. predict_instance_schema_uri. If not set, we will generate predict schema from collected predict requests. Corresponds to the JSON property samplePredictInstance

Returns:

  • (Object)


15290
15291
15292
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15290

def sample_predict_instance
  @sample_predict_instance
end

#schedule_stateString

Output only. Schedule state when the monitoring job is in Running state. Corresponds to the JSON property scheduleState

Returns:

  • (String)


15295
15296
15297
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15295

def schedule_state
  @schedule_state
end

#stateString

Output only. The detailed state of the monitoring job. When the job is still creating, the state will be 'PENDING'. Once the job is successfully created, the state will be 'RUNNING'. Pause the job, the state will be 'PAUSED'. Resume the job, the state will return to 'RUNNING'. Corresponds to the JSON property state

Returns:

  • (String)


15303
15304
15305
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15303

def state
  @state
end

#stats_anomalies_base_directoryGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1GcsDestination

The Google Cloud Storage location where the output is to be written to. Corresponds to the JSON property statsAnomaliesBaseDirectory



15308
15309
15310
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15308

def stats_anomalies_base_directory
  @stats_anomalies_base_directory
end

#update_timeString

Output only. Timestamp when this ModelDeploymentMonitoringJob was updated most recently. Corresponds to the JSON property updateTime

Returns:

  • (String)


15314
15315
15316
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15314

def update_time
  @update_time
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15321

def update!(**args)
  @analysis_instance_schema_uri = args[:analysis_instance_schema_uri] if args.key?(:analysis_instance_schema_uri)
  @bigquery_tables = args[:bigquery_tables] if args.key?(:bigquery_tables)
  @create_time = args[:create_time] if args.key?(:create_time)
  @display_name = args[:display_name] if args.key?(:display_name)
  @enable_monitoring_pipeline_logs = args[:enable_monitoring_pipeline_logs] if args.key?(:enable_monitoring_pipeline_logs)
  @encryption_spec = args[:encryption_spec] if args.key?(:encryption_spec)
  @endpoint = args[:endpoint] if args.key?(:endpoint)
  @error = args[:error] if args.key?(:error)
  @labels = args[:labels] if args.key?(:labels)
  @latest_monitoring_pipeline_metadata = args[:latest_monitoring_pipeline_metadata] if args.key?(:latest_monitoring_pipeline_metadata)
  @log_ttl = args[:log_ttl] if args.key?(:log_ttl)
  @logging_sampling_strategy = args[:logging_sampling_strategy] if args.key?(:logging_sampling_strategy)
  @model_deployment_monitoring_objective_configs = args[:model_deployment_monitoring_objective_configs] if args.key?(:model_deployment_monitoring_objective_configs)
  @model_deployment_monitoring_schedule_config = args[:model_deployment_monitoring_schedule_config] if args.key?(:model_deployment_monitoring_schedule_config)
  @model_monitoring_alert_config = args[:model_monitoring_alert_config] if args.key?(:model_monitoring_alert_config)
  @name = args[:name] if args.key?(:name)
  @next_schedule_time = args[:next_schedule_time] if args.key?(:next_schedule_time)
  @predict_instance_schema_uri = args[:predict_instance_schema_uri] if args.key?(:predict_instance_schema_uri)
  @sample_predict_instance = args[:sample_predict_instance] if args.key?(:sample_predict_instance)
  @schedule_state = args[:schedule_state] if args.key?(:schedule_state)
  @state = args[:state] if args.key?(:state)
  @stats_anomalies_base_directory = args[:stats_anomalies_base_directory] if args.key?(:stats_anomalies_base_directory)
  @update_time = args[:update_time] if args.key?(:update_time)
end