Class: Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ModelMonitoringStatsAnomaliesFeatureHistoricStatsAnomalies

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/aiplatform_v1beta1/classes.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb

Overview

Historical Stats (and Anomalies) for a specific Feature.

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1ModelMonitoringStatsAnomaliesFeatureHistoricStatsAnomalies

Returns a new instance of GoogleCloudAiplatformV1beta1ModelMonitoringStatsAnomaliesFeatureHistoricStatsAnomalies.



17290
17291
17292
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 17290

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#feature_display_nameString

Display Name of the Feature. Corresponds to the JSON property featureDisplayName

Returns:

  • (String)


17265
17266
17267
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 17265

def feature_display_name
  @feature_display_name
end

#prediction_statsArray<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1FeatureStatsAnomaly>

A list of historical stats generated by different time window's Prediction Dataset. Corresponds to the JSON property predictionStats



17271
17272
17273
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 17271

def prediction_stats
  @prediction_stats
end

#thresholdGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ThresholdConfig

The config for feature monitoring threshold. Corresponds to the JSON property threshold



17276
17277
17278
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 17276

def threshold
  @threshold
end

#training_statsGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1FeatureStatsAnomaly

Stats and Anomaly generated at specific timestamp for specific Feature. The start_time and end_time are used to define the time range of the dataset that current stats belongs to, e.g. prediction traffic is bucketed into prediction datasets by time window. If the Dataset is not defined by time window, start_time = end_time. Timestamp of the stats and anomalies always refers to end_time. Raw stats and anomalies are stored in stats_uri or anomaly_uri in the tensorflow defined protos. Field data_stats contains almost identical information with the raw stats in Vertex AI defined proto, for UI to display. Corresponds to the JSON property trainingStats



17288
17289
17290
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 17288

def training_stats
  @training_stats
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



17295
17296
17297
17298
17299
17300
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 17295

def update!(**args)
  @feature_display_name = args[:feature_display_name] if args.key?(:feature_display_name)
  @prediction_stats = args[:prediction_stats] if args.key?(:prediction_stats)
  @threshold = args[:threshold] if args.key?(:threshold)
  @training_stats = args[:training_stats] if args.key?(:training_stats)
end