Class: Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics
- Inherits:
-
Object
- Object
- Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/aiplatform_v1beta1/classes.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb
Instance Attribute Summary collapse
-
#confidence_threshold ⇒ Float
Metrics are computed with an assumption that the Model never returns predictions with score lower than this value.
-
#confusion_matrix ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsConfusionMatrix
Confusion matrix of the evaluation for this confidence_threshold.
-
#f1_score ⇒ Float
The harmonic mean of recall and precision.
-
#f1_score_at1 ⇒ Float
The harmonic mean of recallAt1 and precisionAt1.
-
#f1_score_macro ⇒ Float
Macro-averaged F1 Score.
-
#f1_score_micro ⇒ Float
Micro-averaged F1 Score.
-
#false_negative_count ⇒ Fixnum
The number of ground truth labels that are not matched by a Model created label.
-
#false_positive_count ⇒ Fixnum
The number of Model created labels that do not match a ground truth label.
-
#false_positive_rate ⇒ Float
False Positive Rate for the given confidence threshold.
-
#false_positive_rate_at1 ⇒ Float
The False Positive Rate when only considering the label that has the highest prediction score and not below the confidence threshold for each DataItem.
-
#max_predictions ⇒ Fixnum
Metrics are computed with an assumption that the Model always returns at most this many predictions (ordered by their score, descendingly), but they all still need to meet the
confidenceThreshold. -
#precision ⇒ Float
Precision for the given confidence threshold.
-
#precision_at1 ⇒ Float
The precision when only considering the label that has the highest prediction score and not below the confidence threshold for each DataItem.
-
#recall ⇒ Float
Recall (True Positive Rate) for the given confidence threshold.
-
#recall_at1 ⇒ Float
The Recall (True Positive Rate) when only considering the label that has the highest prediction score and not below the confidence threshold for each DataItem.
-
#true_negative_count ⇒ Fixnum
The number of labels that were not created by the Model, but if they would, they would not match a ground truth label.
-
#true_positive_count ⇒ Fixnum
The number of Model created labels that match a ground truth label.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics
constructor
A new instance of GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics
Returns a new instance of GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics.
24728 24729 24730 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 24728 def initialize(**args) update!(**args) end |
Instance Attribute Details
#confidence_threshold ⇒ Float
Metrics are computed with an assumption that the Model never returns
predictions with score lower than this value.
Corresponds to the JSON property confidenceThreshold
24637 24638 24639 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 24637 def confidence_threshold @confidence_threshold end |
#confusion_matrix ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsConfusionMatrix
Confusion matrix of the evaluation for this confidence_threshold.
Corresponds to the JSON property confusionMatrix
24642 24643 24644 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 24642 def confusion_matrix @confusion_matrix end |
#f1_score ⇒ Float
The harmonic mean of recall and precision. For summary metrics, it computes
the micro-averaged F1 score.
Corresponds to the JSON property f1Score
24648 24649 24650 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 24648 def f1_score @f1_score end |
#f1_score_at1 ⇒ Float
The harmonic mean of recallAt1 and precisionAt1.
Corresponds to the JSON property f1ScoreAt1
24653 24654 24655 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 24653 def f1_score_at1 @f1_score_at1 end |
#f1_score_macro ⇒ Float
Macro-averaged F1 Score.
Corresponds to the JSON property f1ScoreMacro
24658 24659 24660 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 24658 def f1_score_macro @f1_score_macro end |
#f1_score_micro ⇒ Float
Micro-averaged F1 Score.
Corresponds to the JSON property f1ScoreMicro
24663 24664 24665 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 24663 def f1_score_micro @f1_score_micro end |
#false_negative_count ⇒ Fixnum
The number of ground truth labels that are not matched by a Model created
label.
Corresponds to the JSON property falseNegativeCount
24669 24670 24671 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 24669 def false_negative_count @false_negative_count end |
#false_positive_count ⇒ Fixnum
The number of Model created labels that do not match a ground truth label.
Corresponds to the JSON property falsePositiveCount
24674 24675 24676 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 24674 def false_positive_count @false_positive_count end |
#false_positive_rate ⇒ Float
False Positive Rate for the given confidence threshold.
Corresponds to the JSON property falsePositiveRate
24679 24680 24681 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 24679 def false_positive_rate @false_positive_rate end |
#false_positive_rate_at1 ⇒ Float
The False Positive Rate when only considering the label that has the highest
prediction score and not below the confidence threshold for each DataItem.
Corresponds to the JSON property falsePositiveRateAt1
24685 24686 24687 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 24685 def false_positive_rate_at1 @false_positive_rate_at1 end |
#max_predictions ⇒ Fixnum
Metrics are computed with an assumption that the Model always returns at most
this many predictions (ordered by their score, descendingly), but they all
still need to meet the confidenceThreshold.
Corresponds to the JSON property maxPredictions
24692 24693 24694 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 24692 def max_predictions @max_predictions end |
#precision ⇒ Float
Precision for the given confidence threshold.
Corresponds to the JSON property precision
24697 24698 24699 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 24697 def precision @precision end |
#precision_at1 ⇒ Float
The precision when only considering the label that has the highest prediction
score and not below the confidence threshold for each DataItem.
Corresponds to the JSON property precisionAt1
24703 24704 24705 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 24703 def precision_at1 @precision_at1 end |
#recall ⇒ Float
Recall (True Positive Rate) for the given confidence threshold.
Corresponds to the JSON property recall
24708 24709 24710 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 24708 def recall @recall end |
#recall_at1 ⇒ Float
The Recall (True Positive Rate) when only considering the label that has the
highest prediction score and not below the confidence threshold for each
DataItem.
Corresponds to the JSON property recallAt1
24715 24716 24717 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 24715 def recall_at1 @recall_at1 end |
#true_negative_count ⇒ Fixnum
The number of labels that were not created by the Model, but if they would,
they would not match a ground truth label.
Corresponds to the JSON property trueNegativeCount
24721 24722 24723 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 24721 def true_negative_count @true_negative_count end |
#true_positive_count ⇒ Fixnum
The number of Model created labels that match a ground truth label.
Corresponds to the JSON property truePositiveCount
24726 24727 24728 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 24726 def true_positive_count @true_positive_count end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
24733 24734 24735 24736 24737 24738 24739 24740 24741 24742 24743 24744 24745 24746 24747 24748 24749 24750 24751 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 24733 def update!(**args) @confidence_threshold = args[:confidence_threshold] if args.key?(:confidence_threshold) @confusion_matrix = args[:confusion_matrix] if args.key?(:confusion_matrix) @f1_score = args[:f1_score] if args.key?(:f1_score) @f1_score_at1 = args[:f1_score_at1] if args.key?(:f1_score_at1) @f1_score_macro = args[:f1_score_macro] if args.key?(:f1_score_macro) @f1_score_micro = args[:f1_score_micro] if args.key?(:f1_score_micro) @false_negative_count = args[:false_negative_count] if args.key?(:false_negative_count) @false_positive_count = args[:false_positive_count] if args.key?(:false_positive_count) @false_positive_rate = args[:false_positive_rate] if args.key?(:false_positive_rate) @false_positive_rate_at1 = args[:false_positive_rate_at1] if args.key?(:false_positive_rate_at1) @max_predictions = args[:max_predictions] if args.key?(:max_predictions) @precision = args[:precision] if args.key?(:precision) @precision_at1 = args[:precision_at1] if args.key?(:precision_at1) @recall = args[:recall] if args.key?(:recall) @recall_at1 = args[:recall_at1] if args.key?(:recall_at1) @true_negative_count = args[:true_negative_count] if args.key?(:true_negative_count) @true_positive_count = args[:true_positive_count] if args.key?(:true_positive_count) end |