Class: Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsForecastingEvaluationMetrics

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/aiplatform_v1beta1/classes.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb

Overview

Metrics for forecasting evaluation results.

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsForecastingEvaluationMetrics

Returns a new instance of GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsForecastingEvaluationMetrics.



24866
24867
24868
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 24866

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#mean_absolute_errorFloat

Mean Absolute Error (MAE). Corresponds to the JSON property meanAbsoluteError

Returns:

  • (Float)


24823
24824
24825
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 24823

def mean_absolute_error
  @mean_absolute_error
end

#mean_absolute_percentage_errorFloat

Mean absolute percentage error. Infinity when there are zeros in the ground truth. Corresponds to the JSON property meanAbsolutePercentageError

Returns:

  • (Float)


24829
24830
24831
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 24829

def mean_absolute_percentage_error
  @mean_absolute_percentage_error
end

#quantile_metricsArray<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsForecastingEvaluationMetricsQuantileMetricsEntry>

The quantile metrics entries for each quantile. Corresponds to the JSON property quantileMetrics



24834
24835
24836
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 24834

def quantile_metrics
  @quantile_metrics
end

#r_squaredFloat

Coefficient of determination as Pearson correlation coefficient. Undefined when ground truth or predictions are constant or near constant. Corresponds to the JSON property rSquared

Returns:

  • (Float)


24840
24841
24842
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 24840

def r_squared
  @r_squared
end

#root_mean_squared_errorFloat

Root Mean Squared Error (RMSE). Corresponds to the JSON property rootMeanSquaredError

Returns:

  • (Float)


24845
24846
24847
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 24845

def root_mean_squared_error
  @root_mean_squared_error
end

#root_mean_squared_log_errorFloat

Root mean squared log error. Undefined when there are negative ground truth values or predictions. Corresponds to the JSON property rootMeanSquaredLogError

Returns:

  • (Float)


24851
24852
24853
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 24851

def root_mean_squared_log_error
  @root_mean_squared_log_error
end

#root_mean_squared_percentage_errorFloat

Root Mean Square Percentage Error. Square root of MSPE. Undefined/imaginary when MSPE is negative. Corresponds to the JSON property rootMeanSquaredPercentageError

Returns:

  • (Float)


24857
24858
24859
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 24857

def root_mean_squared_percentage_error
  @root_mean_squared_percentage_error
end

#weighted_absolute_percentage_errorFloat

Weighted Absolute Percentage Error. Does not use weights, this is just what the metric is called. Undefined if actual values sum to zero. Will be very large if actual values sum to a very small number. Corresponds to the JSON property weightedAbsolutePercentageError

Returns:

  • (Float)


24864
24865
24866
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 24864

def weighted_absolute_percentage_error
  @weighted_absolute_percentage_error
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



24871
24872
24873
24874
24875
24876
24877
24878
24879
24880
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 24871

def update!(**args)
  @mean_absolute_error = args[:mean_absolute_error] if args.key?(:mean_absolute_error)
  @mean_absolute_percentage_error = args[:mean_absolute_percentage_error] if args.key?(:mean_absolute_percentage_error)
  @quantile_metrics = args[:quantile_metrics] if args.key?(:quantile_metrics)
  @r_squared = args[:r_squared] if args.key?(:r_squared)
  @root_mean_squared_error = args[:root_mean_squared_error] if args.key?(:root_mean_squared_error)
  @root_mean_squared_log_error = args[:root_mean_squared_log_error] if args.key?(:root_mean_squared_log_error)
  @root_mean_squared_percentage_error = args[:root_mean_squared_percentage_error] if args.key?(:root_mean_squared_percentage_error)
  @weighted_absolute_percentage_error = args[:weighted_absolute_percentage_error] if args.key?(:weighted_absolute_percentage_error)
end