Class: Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionTftForecastingInputsTransformation
- Inherits:
-
Object
- Object
- Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionTftForecastingInputsTransformation
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/aiplatform_v1beta1/classes.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb
Instance Attribute Summary collapse
-
#auto ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionTftForecastingInputsTransformationAutoTransformation
Training pipeline will infer the proper transformation based on the statistic of dataset.
-
#categorical ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionTftForecastingInputsTransformationCategoricalTransformation
Training pipeline will perform following transformation functions.
-
#numeric ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionTftForecastingInputsTransformationNumericTransformation
Training pipeline will perform following transformation functions.
-
#text ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionTftForecastingInputsTransformationTextTransformation
Training pipeline will perform following transformation functions.
-
#timestamp ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionTftForecastingInputsTransformationTimestampTransformation
Training pipeline will perform following transformation functions.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionTftForecastingInputsTransformation
constructor
A new instance of GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionTftForecastingInputsTransformation.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionTftForecastingInputsTransformation
Returns a new instance of GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionTftForecastingInputsTransformation.
29712 29713 29714 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 29712 def initialize(**args) update!(**args) end |
Instance Attribute Details
#auto ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionTftForecastingInputsTransformationAutoTransformation
Training pipeline will infer the proper transformation based on the statistic
of dataset.
Corresponds to the JSON property auto
29672 29673 29674 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 29672 def auto @auto end |
#categorical ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionTftForecastingInputsTransformationCategoricalTransformation
Training pipeline will perform following transformation functions. * The
categorical string as is--no change to case, punctuation, spelling, tense, and
so on. * Convert the category name to a dictionary lookup index and generate
an embedding for each index. * Categories that appear less than 5 times in the
training dataset are treated as the "unknown" category. The "unknown" category
gets its own special lookup index and resulting embedding.
Corresponds to the JSON property categorical
29682 29683 29684 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 29682 def categorical @categorical end |
#numeric ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionTftForecastingInputsTransformationNumericTransformation
Training pipeline will perform following transformation functions. * The value
converted to float32. * The z_score of the value. * log(value+1) when the
value is greater than or equal to 0. Otherwise, this transformation is not
applied and the value is considered a missing value. * z_score of log(value+1)
when the value is greater than or equal to 0. Otherwise, this transformation
is not applied and the value is considered a missing value.
Corresponds to the JSON property numeric
29692 29693 29694 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 29692 def numeric @numeric end |
#text ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionTftForecastingInputsTransformationTextTransformation
Training pipeline will perform following transformation functions. * The text
as is--no change to case, punctuation, spelling, tense, and so on. * Convert
the category name to a dictionary lookup index and generate an embedding for
each index.
Corresponds to the JSON property text
29700 29701 29702 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 29700 def text @text end |
#timestamp ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionTftForecastingInputsTransformationTimestampTransformation
Training pipeline will perform following transformation functions. * Apply the
transformation functions for Numerical columns. * Determine the year, month,
day,and weekday. Treat each value from the timestamp as a Categorical column. *
Invalid numerical values (for example, values that fall outside of a typical
timestamp range, or are extreme values) receive no special treatment and are
not removed.
Corresponds to the JSON property timestamp
29710 29711 29712 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 29710 def @timestamp end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
29717 29718 29719 29720 29721 29722 29723 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 29717 def update!(**args) @auto = args[:auto] if args.key?(:auto) @categorical = args[:categorical] if args.key?(:categorical) @numeric = args[:numeric] if args.key?(:numeric) @text = args[:text] if args.key?(:text) @timestamp = args[:timestamp] if args.key?(:timestamp) end |