Class: Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1IndexDatapoint
- Inherits:
-
Object
- Object
- Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1IndexDatapoint
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/aiplatform_v1beta1/classes.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb
Overview
A datapoint of Index.
Instance Attribute Summary collapse
-
#crowding_tag ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1IndexDatapointCrowdingTag
Crowding tag is a constraint on a neighbor list produced by nearest neighbor search requiring that no more than some value k' of the k neighbors returned have the same value of crowding_attribute.
-
#datapoint_id ⇒ String
Required.
-
#feature_vector ⇒ Array<Float>
Required.
-
#numeric_restricts ⇒ Array<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1IndexDatapointNumericRestriction>
Optional.
-
#restricts ⇒ Array<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1IndexDatapointRestriction>
Optional.
-
#sparse_embedding ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1IndexDatapointSparseEmbedding
Feature embedding vector for sparse index.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1IndexDatapoint
constructor
A new instance of GoogleCloudAiplatformV1beta1IndexDatapoint.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1IndexDatapoint
Returns a new instance of GoogleCloudAiplatformV1beta1IndexDatapoint.
12408 12409 12410 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 12408 def initialize(**args) update!(**args) end |
Instance Attribute Details
#crowding_tag ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1IndexDatapointCrowdingTag
Crowding tag is a constraint on a neighbor list produced by nearest neighbor
search requiring that no more than some value k' of the k neighbors returned
have the same value of crowding_attribute.
Corresponds to the JSON property crowdingTag
12374 12375 12376 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 12374 def crowding_tag @crowding_tag end |
#datapoint_id ⇒ String
Required. Unique identifier of the datapoint.
Corresponds to the JSON property datapointId
12379 12380 12381 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 12379 def datapoint_id @datapoint_id end |
#feature_vector ⇒ Array<Float>
Required. Feature embedding vector for dense index. An array of numbers with
the length of [NearestNeighborSearchConfig.dimensions].
Corresponds to the JSON property featureVector
12385 12386 12387 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 12385 def feature_vector @feature_vector end |
#numeric_restricts ⇒ Array<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1IndexDatapointNumericRestriction>
Optional. List of Restrict of the datapoint, used to perform "restricted
searches" where boolean rule are used to filter the subset of the database
eligible for matching. This uses numeric comparisons.
Corresponds to the JSON property numericRestricts
12392 12393 12394 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 12392 def numeric_restricts @numeric_restricts end |
#restricts ⇒ Array<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1IndexDatapointRestriction>
Optional. List of Restrict of the datapoint, used to perform "restricted
searches" where boolean rule are used to filter the subset of the database
eligible for matching. This uses categorical tokens. See: https://cloud.google.
com/vertex-ai/docs/matching-engine/filtering
Corresponds to the JSON property restricts
12400 12401 12402 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 12400 def restricts @restricts end |
#sparse_embedding ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1IndexDatapointSparseEmbedding
Feature embedding vector for sparse index. An array of numbers whose values
are located in the specified dimensions.
Corresponds to the JSON property sparseEmbedding
12406 12407 12408 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 12406 def @sparse_embedding end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
12413 12414 12415 12416 12417 12418 12419 12420 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 12413 def update!(**args) @crowding_tag = args[:crowding_tag] if args.key?(:crowding_tag) @datapoint_id = args[:datapoint_id] if args.key?(:datapoint_id) @feature_vector = args[:feature_vector] if args.key?(:feature_vector) @numeric_restricts = args[:numeric_restricts] if args.key?(:numeric_restricts) @restricts = args[:restricts] if args.key?(:restricts) @sparse_embedding = args[:sparse_embedding] if args.key?(:sparse_embedding) end |