Class: Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ModelDeploymentMonitoringJob

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/aiplatform_v1beta1/classes.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb

Overview

Represents a job that runs periodically to monitor the deployed models in an endpoint. It will analyze the logged training & prediction data to detect any abnormal behaviors.

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1ModelDeploymentMonitoringJob

Returns a new instance of GoogleCloudAiplatformV1beta1ModelDeploymentMonitoringJob.



15918
15919
15920
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15918

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#analysis_instance_schema_uriString

YAML schema file uri describing the format of a single instance that you want Tensorflow Data Validation (TFDV) to analyze. If this field is empty, all the feature data types are inferred from predict_instance_schema_uri, meaning that TFDV will use the data in the exact format(data type) as prediction request/ response. If there are any data type differences between predict instance and TFDV instance, this field can be used to override the schema. For models trained with Vertex AI, this field must be set as all the fields in predict instance formatted as string. Corresponds to the JSON property analysisInstanceSchemaUri

Returns:

  • (String)


15773
15774
15775
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15773

def analysis_instance_schema_uri
  @analysis_instance_schema_uri
end

#bigquery_tablesArray<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ModelDeploymentMonitoringBigQueryTable>

Output only. The created bigquery tables for the job under customer project. Customer could do their own query & analysis. There could be 4 log tables in maximum: 1. Training data logging predict request/response 2. Serving data logging predict request/response Corresponds to the JSON property bigqueryTables



15781
15782
15783
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15781

def bigquery_tables
  @bigquery_tables
end

#create_timeString

Output only. Timestamp when this ModelDeploymentMonitoringJob was created. Corresponds to the JSON property createTime

Returns:

  • (String)


15786
15787
15788
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15786

def create_time
  @create_time
end

#display_nameString

Required. The user-defined name of the ModelDeploymentMonitoringJob. The name can be up to 128 characters long and can consist of any UTF-8 characters. Display name of a ModelDeploymentMonitoringJob. Corresponds to the JSON property displayName

Returns:

  • (String)


15793
15794
15795
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15793

def display_name
  @display_name
end

#enable_monitoring_pipeline_logsBoolean Also known as: enable_monitoring_pipeline_logs?

If true, the scheduled monitoring pipeline logs are sent to Google Cloud Logging, including pipeline status and anomalies detected. Please note the logs incur cost, which are subject to Cloud Logging pricing. Corresponds to the JSON property enableMonitoringPipelineLogs

Returns:

  • (Boolean)


15801
15802
15803
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15801

def enable_monitoring_pipeline_logs
  @enable_monitoring_pipeline_logs
end

#encryption_specGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1EncryptionSpec

Represents a customer-managed encryption key spec that can be applied to a top- level resource. Corresponds to the JSON property encryptionSpec



15808
15809
15810
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15808

def encryption_spec
  @encryption_spec
end

#endpointString

Required. Endpoint resource name. Format: projects/project/locations/ location/endpoints/endpoint` Corresponds to the JSON propertyendpoint`

Returns:

  • (String)


15814
15815
15816
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15814

def endpoint
  @endpoint
end

#errorGoogle::Apis::AiplatformV1beta1::GoogleRpcStatus

The Status type defines a logical error model that is suitable for different programming environments, including REST APIs and RPC APIs. It is used by gRPC. Each Status message contains three pieces of data: error code, error message, and error details. You can find out more about this error model and how to work with it in the API Design Guide. Corresponds to the JSON property error



15824
15825
15826
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15824

def error
  @error
end

#labelsHash<String,String>

The labels with user-defined metadata to organize your ModelDeploymentMonitoringJob. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels. Corresponds to the JSON property labels

Returns:

  • (Hash<String,String>)


15833
15834
15835
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15833

def labels
  @labels
end

#latest_monitoring_pipeline_metadataGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ModelDeploymentMonitoringJobLatestMonitoringPipelineMetadata

All metadata of most recent monitoring pipelines. Corresponds to the JSON property latestMonitoringPipelineMetadata



15838
15839
15840
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15838

def 
  @latest_monitoring_pipeline_metadata
end

#log_ttlString

The TTL of BigQuery tables in user projects which stores logs. A day is the basic unit of the TTL and we take the ceil of TTL/86400(a day). e.g. second: 3600 indicates ttl = 1 day. Corresponds to the JSON property logTtl

Returns:

  • (String)


15845
15846
15847
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15845

def log_ttl
  @log_ttl
end

#logging_sampling_strategyGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SamplingStrategy

Sampling Strategy for logging, can be for both training and prediction dataset. Corresponds to the JSON property loggingSamplingStrategy



15850
15851
15852
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15850

def logging_sampling_strategy
  @logging_sampling_strategy
end

#model_deployment_monitoring_objective_configsArray<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ModelDeploymentMonitoringObjectiveConfig>

Required. The config for monitoring objectives. This is a per DeployedModel config. Each DeployedModel needs to be configured separately. Corresponds to the JSON property modelDeploymentMonitoringObjectiveConfigs



15856
15857
15858
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15856

def model_deployment_monitoring_objective_configs
  @model_deployment_monitoring_objective_configs
end

#model_deployment_monitoring_schedule_configGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ModelDeploymentMonitoringScheduleConfig

The config for scheduling monitoring job. Corresponds to the JSON property modelDeploymentMonitoringScheduleConfig



15861
15862
15863
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15861

def model_deployment_monitoring_schedule_config
  @model_deployment_monitoring_schedule_config
end

#model_monitoring_alert_configGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ModelMonitoringAlertConfig

The alert config for model monitoring. Corresponds to the JSON property modelMonitoringAlertConfig



15866
15867
15868
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15866

def model_monitoring_alert_config
  @model_monitoring_alert_config
end

#nameString

Output only. Resource name of a ModelDeploymentMonitoringJob. Corresponds to the JSON property name

Returns:

  • (String)


15871
15872
15873
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15871

def name
  @name
end

#next_schedule_timeString

Output only. Timestamp when this monitoring pipeline will be scheduled to run for the next round. Corresponds to the JSON property nextScheduleTime

Returns:

  • (String)


15877
15878
15879
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15877

def next_schedule_time
  @next_schedule_time
end

#predict_instance_schema_uriString

YAML schema file uri describing the format of a single instance, which are given to format this Endpoint's prediction (and explanation). If not set, we will generate predict schema from collected predict requests. Corresponds to the JSON property predictInstanceSchemaUri

Returns:

  • (String)


15884
15885
15886
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15884

def predict_instance_schema_uri
  @predict_instance_schema_uri
end

#sample_predict_instanceObject

Sample Predict instance, same format as PredictRequest.instances, this can be set as a replacement of ModelDeploymentMonitoringJob. predict_instance_schema_uri. If not set, we will generate predict schema from collected predict requests. Corresponds to the JSON property samplePredictInstance

Returns:

  • (Object)


15892
15893
15894
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15892

def sample_predict_instance
  @sample_predict_instance
end

#schedule_stateString

Output only. Schedule state when the monitoring job is in Running state. Corresponds to the JSON property scheduleState

Returns:

  • (String)


15897
15898
15899
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15897

def schedule_state
  @schedule_state
end

#stateString

Output only. The detailed state of the monitoring job. When the job is still creating, the state will be 'PENDING'. Once the job is successfully created, the state will be 'RUNNING'. Pause the job, the state will be 'PAUSED'. Resume the job, the state will return to 'RUNNING'. Corresponds to the JSON property state

Returns:

  • (String)


15905
15906
15907
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15905

def state
  @state
end

#stats_anomalies_base_directoryGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1GcsDestination

The Google Cloud Storage location where the output is to be written to. Corresponds to the JSON property statsAnomaliesBaseDirectory



15910
15911
15912
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15910

def stats_anomalies_base_directory
  @stats_anomalies_base_directory
end

#update_timeString

Output only. Timestamp when this ModelDeploymentMonitoringJob was updated most recently. Corresponds to the JSON property updateTime

Returns:

  • (String)


15916
15917
15918
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15916

def update_time
  @update_time
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15923

def update!(**args)
  @analysis_instance_schema_uri = args[:analysis_instance_schema_uri] if args.key?(:analysis_instance_schema_uri)
  @bigquery_tables = args[:bigquery_tables] if args.key?(:bigquery_tables)
  @create_time = args[:create_time] if args.key?(:create_time)
  @display_name = args[:display_name] if args.key?(:display_name)
  @enable_monitoring_pipeline_logs = args[:enable_monitoring_pipeline_logs] if args.key?(:enable_monitoring_pipeline_logs)
  @encryption_spec = args[:encryption_spec] if args.key?(:encryption_spec)
  @endpoint = args[:endpoint] if args.key?(:endpoint)
  @error = args[:error] if args.key?(:error)
  @labels = args[:labels] if args.key?(:labels)
  @latest_monitoring_pipeline_metadata = args[:latest_monitoring_pipeline_metadata] if args.key?(:latest_monitoring_pipeline_metadata)
  @log_ttl = args[:log_ttl] if args.key?(:log_ttl)
  @logging_sampling_strategy = args[:logging_sampling_strategy] if args.key?(:logging_sampling_strategy)
  @model_deployment_monitoring_objective_configs = args[:model_deployment_monitoring_objective_configs] if args.key?(:model_deployment_monitoring_objective_configs)
  @model_deployment_monitoring_schedule_config = args[:model_deployment_monitoring_schedule_config] if args.key?(:model_deployment_monitoring_schedule_config)
  @model_monitoring_alert_config = args[:model_monitoring_alert_config] if args.key?(:model_monitoring_alert_config)
  @name = args[:name] if args.key?(:name)
  @next_schedule_time = args[:next_schedule_time] if args.key?(:next_schedule_time)
  @predict_instance_schema_uri = args[:predict_instance_schema_uri] if args.key?(:predict_instance_schema_uri)
  @sample_predict_instance = args[:sample_predict_instance] if args.key?(:sample_predict_instance)
  @schedule_state = args[:schedule_state] if args.key?(:schedule_state)
  @state = args[:state] if args.key?(:state)
  @stats_anomalies_base_directory = args[:stats_anomalies_base_directory] if args.key?(:stats_anomalies_base_directory)
  @update_time = args[:update_time] if args.key?(:update_time)
end