Class: Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/aiplatform_v1beta1/classes.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics

Returns a new instance of GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics.



25436
25437
25438
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25436

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#confidence_thresholdFloat

Metrics are computed with an assumption that the Model never returns predictions with score lower than this value. Corresponds to the JSON property confidenceThreshold

Returns:

  • (Float)


25345
25346
25347
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25345

def confidence_threshold
  @confidence_threshold
end

#confusion_matrixGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsConfusionMatrix

Confusion matrix of the evaluation for this confidence_threshold. Corresponds to the JSON property confusionMatrix



25350
25351
25352
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25350

def confusion_matrix
  @confusion_matrix
end

#f1_scoreFloat

The harmonic mean of recall and precision. For summary metrics, it computes the micro-averaged F1 score. Corresponds to the JSON property f1Score

Returns:

  • (Float)


25356
25357
25358
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25356

def f1_score
  @f1_score
end

#f1_score_at1Float

The harmonic mean of recallAt1 and precisionAt1. Corresponds to the JSON property f1ScoreAt1

Returns:

  • (Float)


25361
25362
25363
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25361

def f1_score_at1
  @f1_score_at1
end

#f1_score_macroFloat

Macro-averaged F1 Score. Corresponds to the JSON property f1ScoreMacro

Returns:

  • (Float)


25366
25367
25368
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25366

def f1_score_macro
  @f1_score_macro
end

#f1_score_microFloat

Micro-averaged F1 Score. Corresponds to the JSON property f1ScoreMicro

Returns:

  • (Float)


25371
25372
25373
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25371

def f1_score_micro
  @f1_score_micro
end

#false_negative_countFixnum

The number of ground truth labels that are not matched by a Model created label. Corresponds to the JSON property falseNegativeCount

Returns:

  • (Fixnum)


25377
25378
25379
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25377

def false_negative_count
  @false_negative_count
end

#false_positive_countFixnum

The number of Model created labels that do not match a ground truth label. Corresponds to the JSON property falsePositiveCount

Returns:

  • (Fixnum)


25382
25383
25384
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25382

def false_positive_count
  @false_positive_count
end

#false_positive_rateFloat

False Positive Rate for the given confidence threshold. Corresponds to the JSON property falsePositiveRate

Returns:

  • (Float)


25387
25388
25389
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25387

def false_positive_rate
  @false_positive_rate
end

#false_positive_rate_at1Float

The False Positive Rate when only considering the label that has the highest prediction score and not below the confidence threshold for each DataItem. Corresponds to the JSON property falsePositiveRateAt1

Returns:

  • (Float)


25393
25394
25395
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25393

def false_positive_rate_at1
  @false_positive_rate_at1
end

#max_predictionsFixnum

Metrics are computed with an assumption that the Model always returns at most this many predictions (ordered by their score, descendingly), but they all still need to meet the confidenceThreshold. Corresponds to the JSON property maxPredictions

Returns:

  • (Fixnum)


25400
25401
25402
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25400

def max_predictions
  @max_predictions
end

#precisionFloat

Precision for the given confidence threshold. Corresponds to the JSON property precision

Returns:

  • (Float)


25405
25406
25407
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25405

def precision
  @precision
end

#precision_at1Float

The precision when only considering the label that has the highest prediction score and not below the confidence threshold for each DataItem. Corresponds to the JSON property precisionAt1

Returns:

  • (Float)


25411
25412
25413
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25411

def precision_at1
  @precision_at1
end

#recallFloat

Recall (True Positive Rate) for the given confidence threshold. Corresponds to the JSON property recall

Returns:

  • (Float)


25416
25417
25418
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25416

def recall
  @recall
end

#recall_at1Float

The Recall (True Positive Rate) when only considering the label that has the highest prediction score and not below the confidence threshold for each DataItem. Corresponds to the JSON property recallAt1

Returns:

  • (Float)


25423
25424
25425
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25423

def recall_at1
  @recall_at1
end

#true_negative_countFixnum

The number of labels that were not created by the Model, but if they would, they would not match a ground truth label. Corresponds to the JSON property trueNegativeCount

Returns:

  • (Fixnum)


25429
25430
25431
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25429

def true_negative_count
  @true_negative_count
end

#true_positive_countFixnum

The number of Model created labels that match a ground truth label. Corresponds to the JSON property truePositiveCount

Returns:

  • (Fixnum)


25434
25435
25436
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25434

def true_positive_count
  @true_positive_count
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



25441
25442
25443
25444
25445
25446
25447
25448
25449
25450
25451
25452
25453
25454
25455
25456
25457
25458
25459
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25441

def update!(**args)
  @confidence_threshold = args[:confidence_threshold] if args.key?(:confidence_threshold)
  @confusion_matrix = args[:confusion_matrix] if args.key?(:confusion_matrix)
  @f1_score = args[:f1_score] if args.key?(:f1_score)
  @f1_score_at1 = args[:f1_score_at1] if args.key?(:f1_score_at1)
  @f1_score_macro = args[:f1_score_macro] if args.key?(:f1_score_macro)
  @f1_score_micro = args[:f1_score_micro] if args.key?(:f1_score_micro)
  @false_negative_count = args[:false_negative_count] if args.key?(:false_negative_count)
  @false_positive_count = args[:false_positive_count] if args.key?(:false_positive_count)
  @false_positive_rate = args[:false_positive_rate] if args.key?(:false_positive_rate)
  @false_positive_rate_at1 = args[:false_positive_rate_at1] if args.key?(:false_positive_rate_at1)
  @max_predictions = args[:max_predictions] if args.key?(:max_predictions)
  @precision = args[:precision] if args.key?(:precision)
  @precision_at1 = args[:precision_at1] if args.key?(:precision_at1)
  @recall = args[:recall] if args.key?(:recall)
  @recall_at1 = args[:recall_at1] if args.key?(:recall_at1)
  @true_negative_count = args[:true_negative_count] if args.key?(:true_negative_count)
  @true_positive_count = args[:true_positive_count] if args.key?(:true_positive_count)
end