Class: Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsPairwiseTextGenerationEvaluationMetrics
- Inherits:
-
Object
- Object
- Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsPairwiseTextGenerationEvaluationMetrics
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/aiplatform_v1beta1/classes.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb
Overview
Metrics for general pairwise text generation evaluation results.
Instance Attribute Summary collapse
-
#accuracy ⇒ Float
Fraction of cases where the autorater agreed with the human raters.
-
#baseline_model_win_rate ⇒ Float
Percentage of time the autorater decided the baseline model had the better response.
-
#cohens_kappa ⇒ Float
A measurement of agreement between the autorater and human raters that takes the likelihood of random agreement into account.
-
#f1_score ⇒ Float
Harmonic mean of precision and recall.
-
#false_negative_count ⇒ Fixnum
Number of examples where the autorater chose the baseline model, but humans preferred the model.
-
#false_positive_count ⇒ Fixnum
Number of examples where the autorater chose the model, but humans preferred the baseline model.
-
#human_preference_baseline_model_win_rate ⇒ Float
Percentage of time humans decided the baseline model had the better response.
-
#human_preference_model_win_rate ⇒ Float
Percentage of time humans decided the model had the better response.
-
#model_win_rate ⇒ Float
Percentage of time the autorater decided the model had the better response.
-
#precision ⇒ Float
Fraction of cases where the autorater and humans thought the model had a better response out of all cases where the autorater thought the model had a better response.
-
#recall ⇒ Float
Fraction of cases where the autorater and humans thought the model had a better response out of all cases where the humans thought the model had a better response.
-
#true_negative_count ⇒ Fixnum
Number of examples where both the autorater and humans decided that the model had the worse response.
-
#true_positive_count ⇒ Fixnum
Number of examples where both the autorater and humans decided that the model had the better response.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsPairwiseTextGenerationEvaluationMetrics
constructor
A new instance of GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsPairwiseTextGenerationEvaluationMetrics.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsPairwiseTextGenerationEvaluationMetrics
Returns a new instance of GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsPairwiseTextGenerationEvaluationMetrics.
25837 25838 25839 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25837 def initialize(**args) update!(**args) end |
Instance Attribute Details
#accuracy ⇒ Float
Fraction of cases where the autorater agreed with the human raters.
Corresponds to the JSON property accuracy
25765 25766 25767 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25765 def accuracy @accuracy end |
#baseline_model_win_rate ⇒ Float
Percentage of time the autorater decided the baseline model had the better
response.
Corresponds to the JSON property baselineModelWinRate
25771 25772 25773 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25771 def baseline_model_win_rate @baseline_model_win_rate end |
#cohens_kappa ⇒ Float
A measurement of agreement between the autorater and human raters that takes
the likelihood of random agreement into account.
Corresponds to the JSON property cohensKappa
25777 25778 25779 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25777 def cohens_kappa @cohens_kappa end |
#f1_score ⇒ Float
Harmonic mean of precision and recall.
Corresponds to the JSON property f1Score
25782 25783 25784 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25782 def f1_score @f1_score end |
#false_negative_count ⇒ Fixnum
Number of examples where the autorater chose the baseline model, but humans
preferred the model.
Corresponds to the JSON property falseNegativeCount
25788 25789 25790 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25788 def false_negative_count @false_negative_count end |
#false_positive_count ⇒ Fixnum
Number of examples where the autorater chose the model, but humans preferred
the baseline model.
Corresponds to the JSON property falsePositiveCount
25794 25795 25796 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25794 def false_positive_count @false_positive_count end |
#human_preference_baseline_model_win_rate ⇒ Float
Percentage of time humans decided the baseline model had the better response.
Corresponds to the JSON property humanPreferenceBaselineModelWinRate
25799 25800 25801 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25799 def human_preference_baseline_model_win_rate @human_preference_baseline_model_win_rate end |
#human_preference_model_win_rate ⇒ Float
Percentage of time humans decided the model had the better response.
Corresponds to the JSON property humanPreferenceModelWinRate
25804 25805 25806 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25804 def human_preference_model_win_rate @human_preference_model_win_rate end |
#model_win_rate ⇒ Float
Percentage of time the autorater decided the model had the better response.
Corresponds to the JSON property modelWinRate
25809 25810 25811 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25809 def model_win_rate @model_win_rate end |
#precision ⇒ Float
Fraction of cases where the autorater and humans thought the model had a
better response out of all cases where the autorater thought the model had a
better response. True positive divided by all positive.
Corresponds to the JSON property precision
25816 25817 25818 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25816 def precision @precision end |
#recall ⇒ Float
Fraction of cases where the autorater and humans thought the model had a
better response out of all cases where the humans thought the model had a
better response.
Corresponds to the JSON property recall
25823 25824 25825 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25823 def recall @recall end |
#true_negative_count ⇒ Fixnum
Number of examples where both the autorater and humans decided that the model
had the worse response.
Corresponds to the JSON property trueNegativeCount
25829 25830 25831 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25829 def true_negative_count @true_negative_count end |
#true_positive_count ⇒ Fixnum
Number of examples where both the autorater and humans decided that the model
had the better response.
Corresponds to the JSON property truePositiveCount
25835 25836 25837 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25835 def true_positive_count @true_positive_count end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
25842 25843 25844 25845 25846 25847 25848 25849 25850 25851 25852 25853 25854 25855 25856 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25842 def update!(**args) @accuracy = args[:accuracy] if args.key?(:accuracy) @baseline_model_win_rate = args[:baseline_model_win_rate] if args.key?(:baseline_model_win_rate) @cohens_kappa = args[:cohens_kappa] if args.key?(:cohens_kappa) @f1_score = args[:f1_score] if args.key?(:f1_score) @false_negative_count = args[:false_negative_count] if args.key?(:false_negative_count) @false_positive_count = args[:false_positive_count] if args.key?(:false_positive_count) @human_preference_baseline_model_win_rate = args[:human_preference_baseline_model_win_rate] if args.key?(:human_preference_baseline_model_win_rate) @human_preference_model_win_rate = args[:human_preference_model_win_rate] if args.key?(:human_preference_model_win_rate) @model_win_rate = args[:model_win_rate] if args.key?(:model_win_rate) @precision = args[:precision] if args.key?(:precision) @recall = args[:recall] if args.key?(:recall) @true_negative_count = args[:true_negative_count] if args.key?(:true_negative_count) @true_positive_count = args[:true_positive_count] if args.key?(:true_positive_count) end |