Class: Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionTftForecastingInputsTransformation
- Inherits:
-
Object
- Object
- Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionTftForecastingInputsTransformation
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/aiplatform_v1beta1/classes.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb
Instance Attribute Summary collapse
-
#auto ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionTftForecastingInputsTransformationAutoTransformation
Training pipeline will infer the proper transformation based on the statistic of dataset.
-
#categorical ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionTftForecastingInputsTransformationCategoricalTransformation
Training pipeline will perform following transformation functions.
-
#numeric ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionTftForecastingInputsTransformationNumericTransformation
Training pipeline will perform following transformation functions.
-
#text ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionTftForecastingInputsTransformationTextTransformation
Training pipeline will perform following transformation functions.
-
#timestamp ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionTftForecastingInputsTransformationTimestampTransformation
Training pipeline will perform following transformation functions.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionTftForecastingInputsTransformation
constructor
A new instance of GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionTftForecastingInputsTransformation.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionTftForecastingInputsTransformation
Returns a new instance of GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionTftForecastingInputsTransformation.
30420 30421 30422 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 30420 def initialize(**args) update!(**args) end |
Instance Attribute Details
#auto ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionTftForecastingInputsTransformationAutoTransformation
Training pipeline will infer the proper transformation based on the statistic
of dataset.
Corresponds to the JSON property auto
30380 30381 30382 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 30380 def auto @auto end |
#categorical ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionTftForecastingInputsTransformationCategoricalTransformation
Training pipeline will perform following transformation functions. * The
categorical string as is--no change to case, punctuation, spelling, tense, and
so on. * Convert the category name to a dictionary lookup index and generate
an embedding for each index. * Categories that appear less than 5 times in the
training dataset are treated as the "unknown" category. The "unknown" category
gets its own special lookup index and resulting embedding.
Corresponds to the JSON property categorical
30390 30391 30392 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 30390 def categorical @categorical end |
#numeric ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionTftForecastingInputsTransformationNumericTransformation
Training pipeline will perform following transformation functions. * The value
converted to float32. * The z_score of the value. * log(value+1) when the
value is greater than or equal to 0. Otherwise, this transformation is not
applied and the value is considered a missing value. * z_score of log(value+1)
when the value is greater than or equal to 0. Otherwise, this transformation
is not applied and the value is considered a missing value.
Corresponds to the JSON property numeric
30400 30401 30402 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 30400 def numeric @numeric end |
#text ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionTftForecastingInputsTransformationTextTransformation
Training pipeline will perform following transformation functions. * The text
as is--no change to case, punctuation, spelling, tense, and so on. * Convert
the category name to a dictionary lookup index and generate an embedding for
each index.
Corresponds to the JSON property text
30408 30409 30410 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 30408 def text @text end |
#timestamp ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionTftForecastingInputsTransformationTimestampTransformation
Training pipeline will perform following transformation functions. * Apply the
transformation functions for Numerical columns. * Determine the year, month,
day,and weekday. Treat each value from the timestamp as a Categorical column. *
Invalid numerical values (for example, values that fall outside of a typical
timestamp range, or are extreme values) receive no special treatment and are
not removed.
Corresponds to the JSON property timestamp
30418 30419 30420 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 30418 def @timestamp end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
30425 30426 30427 30428 30429 30430 30431 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 30425 def update!(**args) @auto = args[:auto] if args.key?(:auto) @categorical = args[:categorical] if args.key?(:categorical) @numeric = args[:numeric] if args.key?(:numeric) @text = args[:text] if args.key?(:text) @timestamp = args[:timestamp] if args.key?(:timestamp) end |