Class: Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1IndexDatapoint

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/aiplatform_v1beta1/classes.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb

Overview

A datapoint of Index.

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1IndexDatapoint

Returns a new instance of GoogleCloudAiplatformV1beta1IndexDatapoint.



12418
12419
12420
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 12418

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#crowding_tagGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1IndexDatapointCrowdingTag

Crowding tag is a constraint on a neighbor list produced by nearest neighbor search requiring that no more than some value k' of the k neighbors returned have the same value of crowding_attribute. Corresponds to the JSON property crowdingTag



12384
12385
12386
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 12384

def crowding_tag
  @crowding_tag
end

#datapoint_idString

Required. Unique identifier of the datapoint. Corresponds to the JSON property datapointId

Returns:

  • (String)


12389
12390
12391
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 12389

def datapoint_id
  @datapoint_id
end

#feature_vectorArray<Float>

Required. Feature embedding vector for dense index. An array of numbers with the length of [NearestNeighborSearchConfig.dimensions]. Corresponds to the JSON property featureVector

Returns:

  • (Array<Float>)


12395
12396
12397
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 12395

def feature_vector
  @feature_vector
end

#numeric_restrictsArray<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1IndexDatapointNumericRestriction>

Optional. List of Restrict of the datapoint, used to perform "restricted searches" where boolean rule are used to filter the subset of the database eligible for matching. This uses numeric comparisons. Corresponds to the JSON property numericRestricts



12402
12403
12404
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 12402

def numeric_restricts
  @numeric_restricts
end

#restrictsArray<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1IndexDatapointRestriction>

Optional. List of Restrict of the datapoint, used to perform "restricted searches" where boolean rule are used to filter the subset of the database eligible for matching. This uses categorical tokens. See: https://cloud.google. com/vertex-ai/docs/matching-engine/filtering Corresponds to the JSON property restricts



12410
12411
12412
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 12410

def restricts
  @restricts
end

#sparse_embeddingGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1IndexDatapointSparseEmbedding

Feature embedding vector for sparse index. An array of numbers whose values are located in the specified dimensions. Corresponds to the JSON property sparseEmbedding



12416
12417
12418
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 12416

def sparse_embedding
  @sparse_embedding
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



12423
12424
12425
12426
12427
12428
12429
12430
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 12423

def update!(**args)
  @crowding_tag = args[:crowding_tag] if args.key?(:crowding_tag)
  @datapoint_id = args[:datapoint_id] if args.key?(:datapoint_id)
  @feature_vector = args[:feature_vector] if args.key?(:feature_vector)
  @numeric_restricts = args[:numeric_restricts] if args.key?(:numeric_restricts)
  @restricts = args[:restricts] if args.key?(:restricts)
  @sparse_embedding = args[:sparse_embedding] if args.key?(:sparse_embedding)
end