Class: Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsClassificationEvaluationMetrics
- Inherits:
-
Object
- Object
- Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsClassificationEvaluationMetrics
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/aiplatform_v1beta1/classes.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb
Overview
Metrics for classification evaluation results.
Instance Attribute Summary collapse
-
#au_prc ⇒ Float
The Area Under Precision-Recall Curve metric.
-
#au_roc ⇒ Float
The Area Under Receiver Operating Characteristic curve metric.
-
#confidence_metrics ⇒ Array<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics>
Metrics for each
confidenceThresholdin 0.00,0.05,0.10,...,0.95,0.96,0.97,0. -
#confusion_matrix ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsConfusionMatrix
Confusion matrix of the evaluation.
-
#log_loss ⇒ Float
The Log Loss metric.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsClassificationEvaluationMetrics
constructor
A new instance of GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsClassificationEvaluationMetrics.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsClassificationEvaluationMetrics
Returns a new instance of GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsClassificationEvaluationMetrics.
25346 25347 25348 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25346 def initialize(**args) update!(**args) end |
Instance Attribute Details
#au_prc ⇒ Float
The Area Under Precision-Recall Curve metric. Micro-averaged for the overall
evaluation.
Corresponds to the JSON property auPrc
25319 25320 25321 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25319 def au_prc @au_prc end |
#au_roc ⇒ Float
The Area Under Receiver Operating Characteristic curve metric. Micro-averaged
for the overall evaluation.
Corresponds to the JSON property auRoc
25325 25326 25327 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25325 def au_roc @au_roc end |
#confidence_metrics ⇒ Array<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics>
Metrics for each confidenceThreshold in 0.00,0.05,0.10,...,0.95,0.96,0.97,0.
98,0.99 and positionThreshold = INT32_MAX_VALUE. ROC and precision-recall
curves, and other aggregated metrics are derived from them. The confidence
metrics entries may also be supplied for additional values of
positionThreshold, but from these no aggregated metrics are computed.
Corresponds to the JSON property confidenceMetrics
25334 25335 25336 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25334 def confidence_metrics @confidence_metrics end |
#confusion_matrix ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsConfusionMatrix
Confusion matrix of the evaluation.
Corresponds to the JSON property confusionMatrix
25339 25340 25341 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25339 def confusion_matrix @confusion_matrix end |
#log_loss ⇒ Float
The Log Loss metric.
Corresponds to the JSON property logLoss
25344 25345 25346 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25344 def log_loss @log_loss end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
25351 25352 25353 25354 25355 25356 25357 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25351 def update!(**args) @au_prc = args[:au_prc] if args.key?(:au_prc) @au_roc = args[:au_roc] if args.key?(:au_roc) @confidence_metrics = args[:confidence_metrics] if args.key?(:confidence_metrics) @confusion_matrix = args[:confusion_matrix] if args.key?(:confusion_matrix) @log_loss = args[:log_loss] if args.key?(:log_loss) end |