Class: Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsForecastingEvaluationMetrics

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/aiplatform_v1beta1/classes.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb

Overview

Metrics for forecasting evaluation results.

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsForecastingEvaluationMetrics

Returns a new instance of GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsForecastingEvaluationMetrics.



25597
25598
25599
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25597

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#mean_absolute_errorFloat

Mean Absolute Error (MAE). Corresponds to the JSON property meanAbsoluteError

Returns:

  • (Float)


25554
25555
25556
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25554

def mean_absolute_error
  @mean_absolute_error
end

#mean_absolute_percentage_errorFloat

Mean absolute percentage error. Infinity when there are zeros in the ground truth. Corresponds to the JSON property meanAbsolutePercentageError

Returns:

  • (Float)


25560
25561
25562
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25560

def mean_absolute_percentage_error
  @mean_absolute_percentage_error
end

#quantile_metricsArray<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsForecastingEvaluationMetricsQuantileMetricsEntry>

The quantile metrics entries for each quantile. Corresponds to the JSON property quantileMetrics



25565
25566
25567
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25565

def quantile_metrics
  @quantile_metrics
end

#r_squaredFloat

Coefficient of determination as Pearson correlation coefficient. Undefined when ground truth or predictions are constant or near constant. Corresponds to the JSON property rSquared

Returns:

  • (Float)


25571
25572
25573
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25571

def r_squared
  @r_squared
end

#root_mean_squared_errorFloat

Root Mean Squared Error (RMSE). Corresponds to the JSON property rootMeanSquaredError

Returns:

  • (Float)


25576
25577
25578
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25576

def root_mean_squared_error
  @root_mean_squared_error
end

#root_mean_squared_log_errorFloat

Root mean squared log error. Undefined when there are negative ground truth values or predictions. Corresponds to the JSON property rootMeanSquaredLogError

Returns:

  • (Float)


25582
25583
25584
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25582

def root_mean_squared_log_error
  @root_mean_squared_log_error
end

#root_mean_squared_percentage_errorFloat

Root Mean Square Percentage Error. Square root of MSPE. Undefined/imaginary when MSPE is negative. Corresponds to the JSON property rootMeanSquaredPercentageError

Returns:

  • (Float)


25588
25589
25590
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25588

def root_mean_squared_percentage_error
  @root_mean_squared_percentage_error
end

#weighted_absolute_percentage_errorFloat

Weighted Absolute Percentage Error. Does not use weights, this is just what the metric is called. Undefined if actual values sum to zero. Will be very large if actual values sum to a very small number. Corresponds to the JSON property weightedAbsolutePercentageError

Returns:

  • (Float)


25595
25596
25597
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25595

def weighted_absolute_percentage_error
  @weighted_absolute_percentage_error
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



25602
25603
25604
25605
25606
25607
25608
25609
25610
25611
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25602

def update!(**args)
  @mean_absolute_error = args[:mean_absolute_error] if args.key?(:mean_absolute_error)
  @mean_absolute_percentage_error = args[:mean_absolute_percentage_error] if args.key?(:mean_absolute_percentage_error)
  @quantile_metrics = args[:quantile_metrics] if args.key?(:quantile_metrics)
  @r_squared = args[:r_squared] if args.key?(:r_squared)
  @root_mean_squared_error = args[:root_mean_squared_error] if args.key?(:root_mean_squared_error)
  @root_mean_squared_log_error = args[:root_mean_squared_log_error] if args.key?(:root_mean_squared_log_error)
  @root_mean_squared_percentage_error = args[:root_mean_squared_percentage_error] if args.key?(:root_mean_squared_percentage_error)
  @weighted_absolute_percentage_error = args[:weighted_absolute_percentage_error] if args.key?(:weighted_absolute_percentage_error)
end