Class: Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsForecastingEvaluationMetrics
- Inherits:
-
Object
- Object
- Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsForecastingEvaluationMetrics
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/aiplatform_v1beta1/classes.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb
Overview
Metrics for forecasting evaluation results.
Instance Attribute Summary collapse
-
#mean_absolute_error ⇒ Float
Mean Absolute Error (MAE).
-
#mean_absolute_percentage_error ⇒ Float
Mean absolute percentage error.
-
#quantile_metrics ⇒ Array<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsForecastingEvaluationMetricsQuantileMetricsEntry>
The quantile metrics entries for each quantile.
-
#r_squared ⇒ Float
Coefficient of determination as Pearson correlation coefficient.
-
#root_mean_squared_error ⇒ Float
Root Mean Squared Error (RMSE).
-
#root_mean_squared_log_error ⇒ Float
Root mean squared log error.
-
#root_mean_squared_percentage_error ⇒ Float
Root Mean Square Percentage Error.
-
#weighted_absolute_percentage_error ⇒ Float
Weighted Absolute Percentage Error.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsForecastingEvaluationMetrics
constructor
A new instance of GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsForecastingEvaluationMetrics.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsForecastingEvaluationMetrics
Returns a new instance of GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsForecastingEvaluationMetrics.
25597 25598 25599 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25597 def initialize(**args) update!(**args) end |
Instance Attribute Details
#mean_absolute_error ⇒ Float
Mean Absolute Error (MAE).
Corresponds to the JSON property meanAbsoluteError
25554 25555 25556 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25554 def mean_absolute_error @mean_absolute_error end |
#mean_absolute_percentage_error ⇒ Float
Mean absolute percentage error. Infinity when there are zeros in the ground
truth.
Corresponds to the JSON property meanAbsolutePercentageError
25560 25561 25562 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25560 def mean_absolute_percentage_error @mean_absolute_percentage_error end |
#quantile_metrics ⇒ Array<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsForecastingEvaluationMetricsQuantileMetricsEntry>
The quantile metrics entries for each quantile.
Corresponds to the JSON property quantileMetrics
25565 25566 25567 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25565 def quantile_metrics @quantile_metrics end |
#r_squared ⇒ Float
Coefficient of determination as Pearson correlation coefficient. Undefined
when ground truth or predictions are constant or near constant.
Corresponds to the JSON property rSquared
25571 25572 25573 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25571 def r_squared @r_squared end |
#root_mean_squared_error ⇒ Float
Root Mean Squared Error (RMSE).
Corresponds to the JSON property rootMeanSquaredError
25576 25577 25578 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25576 def root_mean_squared_error @root_mean_squared_error end |
#root_mean_squared_log_error ⇒ Float
Root mean squared log error. Undefined when there are negative ground truth
values or predictions.
Corresponds to the JSON property rootMeanSquaredLogError
25582 25583 25584 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25582 def root_mean_squared_log_error @root_mean_squared_log_error end |
#root_mean_squared_percentage_error ⇒ Float
Root Mean Square Percentage Error. Square root of MSPE. Undefined/imaginary
when MSPE is negative.
Corresponds to the JSON property rootMeanSquaredPercentageError
25588 25589 25590 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25588 def root_mean_squared_percentage_error @root_mean_squared_percentage_error end |
#weighted_absolute_percentage_error ⇒ Float
Weighted Absolute Percentage Error. Does not use weights, this is just what
the metric is called. Undefined if actual values sum to zero. Will be very
large if actual values sum to a very small number.
Corresponds to the JSON property weightedAbsolutePercentageError
25595 25596 25597 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25595 def weighted_absolute_percentage_error @weighted_absolute_percentage_error end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
25602 25603 25604 25605 25606 25607 25608 25609 25610 25611 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25602 def update!(**args) @mean_absolute_error = args[:mean_absolute_error] if args.key?(:mean_absolute_error) @mean_absolute_percentage_error = args[:mean_absolute_percentage_error] if args.key?(:mean_absolute_percentage_error) @quantile_metrics = args[:quantile_metrics] if args.key?(:quantile_metrics) @r_squared = args[:r_squared] if args.key?(:r_squared) @root_mean_squared_error = args[:root_mean_squared_error] if args.key?(:root_mean_squared_error) @root_mean_squared_log_error = args[:root_mean_squared_log_error] if args.key?(:root_mean_squared_log_error) @root_mean_squared_percentage_error = args[:root_mean_squared_percentage_error] if args.key?(:root_mean_squared_percentage_error) @weighted_absolute_percentage_error = args[:weighted_absolute_percentage_error] if args.key?(:weighted_absolute_percentage_error) end |