Class: Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1FeatureViewVectorSearchConfig

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/aiplatform_v1beta1/classes.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb

Overview

Deprecated. Use IndexConfig instead.

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1FeatureViewVectorSearchConfig

Returns a new instance of GoogleCloudAiplatformV1beta1FeatureViewVectorSearchConfig.



9749
9750
9751
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 9749

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#brute_force_configGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1FeatureViewVectorSearchConfigBruteForceConfig

Optional. Configuration options for using brute force search, which simply implements the standard linear search in the database for each query. It is primarily meant for benchmarking and to generate the ground truth for approximate search. Corresponds to the JSON property bruteForceConfig



9709
9710
9711
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 9709

def brute_force_config
  @brute_force_config
end

#crowding_columnString

Optional. Column of crowding. This column contains crowding attribute which is a constraint on a neighbor list produced by FeatureOnlineStoreService. SearchNearestEntities to diversify search results. If NearestNeighborQuery. per_crowding_attribute_neighbor_count is set to K in SearchNearestEntitiesRequest, it's guaranteed that no more than K entities of the same crowding attribute are returned in the response. Corresponds to the JSON property crowdingColumn

Returns:

  • (String)


9719
9720
9721
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 9719

def crowding_column
  @crowding_column
end

#distance_measure_typeString

Optional. The distance measure used in nearest neighbor search. Corresponds to the JSON property distanceMeasureType

Returns:

  • (String)


9724
9725
9726
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 9724

def distance_measure_type
  @distance_measure_type
end

#embedding_columnString

Optional. Column of embedding. This column contains the source data to create index for vector search. embedding_column must be set when using vector search. Corresponds to the JSON property embeddingColumn

Returns:

  • (String)


9730
9731
9732
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 9730

def embedding_column
  @embedding_column
end

#embedding_dimensionFixnum

Optional. The number of dimensions of the input embedding. Corresponds to the JSON property embeddingDimension

Returns:

  • (Fixnum)


9735
9736
9737
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 9735

def embedding_dimension
  @embedding_dimension
end

#filter_columnsArray<String>

Optional. Columns of features that're used to filter vector search results. Corresponds to the JSON property filterColumns

Returns:

  • (Array<String>)


9740
9741
9742
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 9740

def filter_columns
  @filter_columns
end

#tree_ah_configGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1FeatureViewVectorSearchConfigTreeAhConfig

Optional. Configuration options for the tree-AH algorithm (Shallow tree + Asymmetric Hashing). Please refer to this paper for more details: https:// arxiv.org/abs/1908.10396 Corresponds to the JSON property treeAhConfig



9747
9748
9749
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 9747

def tree_ah_config
  @tree_ah_config
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



9754
9755
9756
9757
9758
9759
9760
9761
9762
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 9754

def update!(**args)
  @brute_force_config = args[:brute_force_config] if args.key?(:brute_force_config)
  @crowding_column = args[:crowding_column] if args.key?(:crowding_column)
  @distance_measure_type = args[:distance_measure_type] if args.key?(:distance_measure_type)
  @embedding_column = args[:embedding_column] if args.key?(:embedding_column)
  @embedding_dimension = args[:embedding_dimension] if args.key?(:embedding_dimension)
  @filter_columns = args[:filter_columns] if args.key?(:filter_columns)
  @tree_ah_config = args[:tree_ah_config] if args.key?(:tree_ah_config)
end