Class: Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1IndexDatapoint
- Inherits:
-
Object
- Object
- Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1IndexDatapoint
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/aiplatform_v1beta1/classes.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb
Overview
A datapoint of Index.
Instance Attribute Summary collapse
-
#crowding_tag ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1IndexDatapointCrowdingTag
Crowding tag is a constraint on a neighbor list produced by nearest neighbor search requiring that no more than some value k' of the k neighbors returned have the same value of crowding_attribute.
-
#datapoint_id ⇒ String
Required.
-
#feature_vector ⇒ Array<Float>
Required.
-
#numeric_restricts ⇒ Array<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1IndexDatapointNumericRestriction>
Optional.
-
#restricts ⇒ Array<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1IndexDatapointRestriction>
Optional.
-
#sparse_embedding ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1IndexDatapointSparseEmbedding
Feature embedding vector for sparse index.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1IndexDatapoint
constructor
A new instance of GoogleCloudAiplatformV1beta1IndexDatapoint.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1IndexDatapoint
Returns a new instance of GoogleCloudAiplatformV1beta1IndexDatapoint.
12157 12158 12159 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 12157 def initialize(**args) update!(**args) end |
Instance Attribute Details
#crowding_tag ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1IndexDatapointCrowdingTag
Crowding tag is a constraint on a neighbor list produced by nearest neighbor
search requiring that no more than some value k' of the k neighbors returned
have the same value of crowding_attribute.
Corresponds to the JSON property crowdingTag
12123 12124 12125 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 12123 def crowding_tag @crowding_tag end |
#datapoint_id ⇒ String
Required. Unique identifier of the datapoint.
Corresponds to the JSON property datapointId
12128 12129 12130 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 12128 def datapoint_id @datapoint_id end |
#feature_vector ⇒ Array<Float>
Required. Feature embedding vector for dense index. An array of numbers with
the length of [NearestNeighborSearchConfig.dimensions].
Corresponds to the JSON property featureVector
12134 12135 12136 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 12134 def feature_vector @feature_vector end |
#numeric_restricts ⇒ Array<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1IndexDatapointNumericRestriction>
Optional. List of Restrict of the datapoint, used to perform "restricted
searches" where boolean rule are used to filter the subset of the database
eligible for matching. This uses numeric comparisons.
Corresponds to the JSON property numericRestricts
12141 12142 12143 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 12141 def numeric_restricts @numeric_restricts end |
#restricts ⇒ Array<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1IndexDatapointRestriction>
Optional. List of Restrict of the datapoint, used to perform "restricted
searches" where boolean rule are used to filter the subset of the database
eligible for matching. This uses categorical tokens. See: https://cloud.google.
com/vertex-ai/docs/matching-engine/filtering
Corresponds to the JSON property restricts
12149 12150 12151 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 12149 def restricts @restricts end |
#sparse_embedding ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1IndexDatapointSparseEmbedding
Feature embedding vector for sparse index. An array of numbers whose values
are located in the specified dimensions.
Corresponds to the JSON property sparseEmbedding
12155 12156 12157 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 12155 def @sparse_embedding end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
12162 12163 12164 12165 12166 12167 12168 12169 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 12162 def update!(**args) @crowding_tag = args[:crowding_tag] if args.key?(:crowding_tag) @datapoint_id = args[:datapoint_id] if args.key?(:datapoint_id) @feature_vector = args[:feature_vector] if args.key?(:feature_vector) @numeric_restricts = args[:numeric_restricts] if args.key?(:numeric_restricts) @restricts = args[:restricts] if args.key?(:restricts) @sparse_embedding = args[:sparse_embedding] if args.key?(:sparse_embedding) end |