Class: Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1IndexDatapoint

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/aiplatform_v1beta1/classes.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb

Overview

A datapoint of Index.

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1IndexDatapoint

Returns a new instance of GoogleCloudAiplatformV1beta1IndexDatapoint.



12157
12158
12159
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 12157

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#crowding_tagGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1IndexDatapointCrowdingTag

Crowding tag is a constraint on a neighbor list produced by nearest neighbor search requiring that no more than some value k' of the k neighbors returned have the same value of crowding_attribute. Corresponds to the JSON property crowdingTag



12123
12124
12125
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 12123

def crowding_tag
  @crowding_tag
end

#datapoint_idString

Required. Unique identifier of the datapoint. Corresponds to the JSON property datapointId

Returns:

  • (String)


12128
12129
12130
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 12128

def datapoint_id
  @datapoint_id
end

#feature_vectorArray<Float>

Required. Feature embedding vector for dense index. An array of numbers with the length of [NearestNeighborSearchConfig.dimensions]. Corresponds to the JSON property featureVector

Returns:

  • (Array<Float>)


12134
12135
12136
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 12134

def feature_vector
  @feature_vector
end

#numeric_restrictsArray<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1IndexDatapointNumericRestriction>

Optional. List of Restrict of the datapoint, used to perform "restricted searches" where boolean rule are used to filter the subset of the database eligible for matching. This uses numeric comparisons. Corresponds to the JSON property numericRestricts



12141
12142
12143
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 12141

def numeric_restricts
  @numeric_restricts
end

#restrictsArray<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1IndexDatapointRestriction>

Optional. List of Restrict of the datapoint, used to perform "restricted searches" where boolean rule are used to filter the subset of the database eligible for matching. This uses categorical tokens. See: https://cloud.google. com/vertex-ai/docs/matching-engine/filtering Corresponds to the JSON property restricts



12149
12150
12151
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 12149

def restricts
  @restricts
end

#sparse_embeddingGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1IndexDatapointSparseEmbedding

Feature embedding vector for sparse index. An array of numbers whose values are located in the specified dimensions. Corresponds to the JSON property sparseEmbedding



12155
12156
12157
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 12155

def sparse_embedding
  @sparse_embedding
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



12162
12163
12164
12165
12166
12167
12168
12169
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 12162

def update!(**args)
  @crowding_tag = args[:crowding_tag] if args.key?(:crowding_tag)
  @datapoint_id = args[:datapoint_id] if args.key?(:datapoint_id)
  @feature_vector = args[:feature_vector] if args.key?(:feature_vector)
  @numeric_restricts = args[:numeric_restricts] if args.key?(:numeric_restricts)
  @restricts = args[:restricts] if args.key?(:restricts)
  @sparse_embedding = args[:sparse_embedding] if args.key?(:sparse_embedding)
end