Class: Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionWindowConfig
- Inherits:
-
Object
- Object
- Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionWindowConfig
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/aiplatform_v1beta1/classes.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb
Overview
Config that contains the strategy used to generate sliding windows in time series training. A window is a series of rows that comprise the context up to the time of prediction, and the horizon following. The corresponding row for each window marks the start of the forecast horizon. Each window is used as an input example for training/evaluation.
Instance Attribute Summary collapse
-
#column ⇒ String
Name of the column that should be used to generate sliding windows.
-
#max_count ⇒ Fixnum
Maximum number of windows that should be generated across all time series.
-
#stride_length ⇒ Fixnum
Stride length used to generate input examples.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionWindowConfig
constructor
A new instance of GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionWindowConfig.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionWindowConfig
Returns a new instance of GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionWindowConfig.
30254 30255 30256 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 30254 def initialize(**args) update!(**args) end |
Instance Attribute Details
#column ⇒ String
Name of the column that should be used to generate sliding windows. The column
should contain either booleans or string booleans; if the value of the row is
True, generate a sliding window with the horizon starting at that row. The
column will not be used as a feature in training.
Corresponds to the JSON property column
30241 30242 30243 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 30241 def column @column end |
#max_count ⇒ Fixnum
Maximum number of windows that should be generated across all time series.
Corresponds to the JSON property maxCount
30246 30247 30248 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 30246 def max_count @max_count end |
#stride_length ⇒ Fixnum
Stride length used to generate input examples. Within one time series, every $
STRIDE_LENGTH rows will be used to generate a sliding window.
Corresponds to the JSON property strideLength
30252 30253 30254 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 30252 def stride_length @stride_length end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
30259 30260 30261 30262 30263 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 30259 def update!(**args) @column = args[:column] if args.key?(:column) @max_count = args[:max_count] if args.key?(:max_count) @stride_length = args[:stride_length] if args.key?(:stride_length) end |