Class: Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1Model

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/aiplatform_v1beta1/classes.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb

Overview

A trained machine learning Model.

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1Model

Returns a new instance of GoogleCloudAiplatformV1beta1Model.



15187
15188
15189
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15187

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#artifact_uriString

Immutable. The path to the directory containing the Model artifact and any of its supporting files. Not required for AutoML Models. Corresponds to the JSON property artifactUri

Returns:

  • (String)


14974
14975
14976
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 14974

def artifact_uri
  @artifact_uri
end

#base_model_sourceGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ModelBaseModelSource

User input field to specify the base model source. Currently it only supports specifing the Model Garden models and Genie models. Corresponds to the JSON property baseModelSource



14980
14981
14982
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 14980

def base_model_source
  @base_model_source
end

#container_specGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ModelContainerSpec

Specification of a container for serving predictions. Some fields in this message correspond to fields in the Kubernetes Container v1 core specification. Corresponds to the JSON property containerSpec



14988
14989
14990
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 14988

def container_spec
  @container_spec
end

#create_timeString

Output only. Timestamp when this Model was uploaded into Vertex AI. Corresponds to the JSON property createTime

Returns:

  • (String)


14993
14994
14995
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 14993

def create_time
  @create_time
end

#deployed_modelsArray<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1DeployedModelRef>

Output only. The pointers to DeployedModels created from this Model. Note that Model could have been deployed to Endpoints in different Locations. Corresponds to the JSON property deployedModels



14999
15000
15001
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 14999

def deployed_models
  @deployed_models
end

#descriptionString

The description of the Model. Corresponds to the JSON property description

Returns:

  • (String)


15004
15005
15006
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15004

def description
  @description
end

#display_nameString

Required. The display name of the Model. The name can be up to 128 characters long and can consist of any UTF-8 characters. Corresponds to the JSON property displayName

Returns:

  • (String)


15010
15011
15012
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15010

def display_name
  @display_name
end

#encryption_specGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1EncryptionSpec

Represents a customer-managed encryption key spec that can be applied to a top- level resource. Corresponds to the JSON property encryptionSpec



15016
15017
15018
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15016

def encryption_spec
  @encryption_spec
end

#etagString

Used to perform consistent read-modify-write updates. If not set, a blind " overwrite" update happens. Corresponds to the JSON property etag

Returns:

  • (String)


15022
15023
15024
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15022

def etag
  @etag
end

#explanation_specGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ExplanationSpec

Specification of Model explanation. Corresponds to the JSON property explanationSpec



15027
15028
15029
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15027

def explanation_spec
  @explanation_spec
end

#labelsHash<String,String>

The labels with user-defined metadata to organize your Models. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels. Corresponds to the JSON property labels

Returns:

  • (Hash<String,String>)


15036
15037
15038
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15036

def labels
  @labels
end

#metadataObject

Immutable. An additional information about the Model; the schema of the metadata can be found in metadata_schema. Unset if the Model does not have any additional information. Corresponds to the JSON property metadata

Returns:

  • (Object)


15043
15044
15045
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15043

def 
  @metadata
end

#metadata_artifactString

Output only. The resource name of the Artifact that was created in MetadataStore when creating the Model. The Artifact resource name pattern is projects/project/locations/location/metadataStores/metadata_store/ artifacts/artifact`. Corresponds to the JSON propertymetadataArtifact`

Returns:

  • (String)


15051
15052
15053
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15051

def 
  @metadata_artifact
end

#metadata_schema_uriString

Immutable. Points to a YAML file stored on Google Cloud Storage describing additional information about the Model, that is specific to it. Unset if the Model does not have any additional information. The schema is defined as an OpenAPI 3.0.2 Schema Object. AutoML Models always have this field populated by Vertex AI, if no additional metadata is needed, this field is set to an empty string. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access. Corresponds to the JSON property metadataSchemaUri

Returns:

  • (String)


15064
15065
15066
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15064

def 
  @metadata_schema_uri
end

#model_source_infoGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ModelSourceInfo

Detail description of the source information of the model. Corresponds to the JSON property modelSourceInfo



15069
15070
15071
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15069

def model_source_info
  @model_source_info
end

#nameString

The resource name of the Model. Corresponds to the JSON property name

Returns:

  • (String)


15074
15075
15076
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15074

def name
  @name
end

#original_model_infoGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ModelOriginalModelInfo

Contains information about the original Model if this Model is a copy. Corresponds to the JSON property originalModelInfo



15079
15080
15081
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15079

def original_model_info
  @original_model_info
end

#predict_schemataGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1PredictSchemata

Contains the schemata used in Model's predictions and explanations via PredictionService.Predict, PredictionService.Explain and BatchPredictionJob. Corresponds to the JSON property predictSchemata



15085
15086
15087
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15085

def predict_schemata
  @predict_schemata
end

#supported_deployment_resources_typesArray<String>

Output only. When this Model is deployed, its prediction resources are described by the prediction_resources field of the Endpoint.deployed_models object. Because not all Models support all resource configuration types, the configuration types this Model supports are listed here. If no configuration types are listed, the Model cannot be deployed to an Endpoint and does not support online predictions (PredictionService.Predict or PredictionService. Explain). Such a Model can serve predictions by using a BatchPredictionJob, if it has at least one entry each in supported_input_storage_formats and supported_output_storage_formats. Corresponds to the JSON property supportedDeploymentResourcesTypes

Returns:

  • (Array<String>)


15098
15099
15100
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15098

def supported_deployment_resources_types
  @supported_deployment_resources_types
end

#supported_export_formatsArray<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ModelExportFormat>

Output only. The formats in which this Model may be exported. If empty, this Model is not available for export. Corresponds to the JSON property supportedExportFormats



15104
15105
15106
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15104

def supported_export_formats
  @supported_export_formats
end

#supported_input_storage_formatsArray<String>

Output only. The formats this Model supports in BatchPredictionJob. input_config. If PredictSchemata.instance_schema_uri exists, the instances should be given as per that schema. The possible formats are: * jsonl The JSON Lines format, where each instance is a single line. Uses GcsSource. * csv The CSV format, where each instance is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses GcsSource. * tf-record The TFRecord format, where each instance is a single record in tfrecord syntax. Uses GcsSource. * tf-record-gzip Similar to tf-record, but the file is gzipped. Uses GcsSource. * bigquery Each instance is a single row in BigQuery. Uses BigQuerySource. * file-list Each line of the file is the location of an instance to process, uses gcs_source field of the InputConfig object. If this Model doesn't support any of these formats it means it cannot be used with a BatchPredictionJob. However, if it has supported_deployment_resources_types, it could serve online predictions by using PredictionService.Predict or PredictionService.Explain. Corresponds to the JSON property supportedInputStorageFormats

Returns:

  • (Array<String>)


15123
15124
15125
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15123

def supported_input_storage_formats
  @supported_input_storage_formats
end

#supported_output_storage_formatsArray<String>

Output only. The formats this Model supports in BatchPredictionJob. output_config. If both PredictSchemata.instance_schema_uri and PredictSchemata. prediction_schema_uri exist, the predictions are returned together with their instances. In other words, the prediction has the original instance data first, followed by the actual prediction content (as per the schema). The possible formats are: * jsonl The JSON Lines format, where each prediction is a single line. Uses GcsDestination. * csv The CSV format, where each prediction is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses GcsDestination. * bigquery Each prediction is a single row in a BigQuery table, uses BigQueryDestination . If this Model doesn't support any of these formats it means it cannot be used with a BatchPredictionJob. However, if it has supported_deployment_resources_types, it could serve online predictions by using PredictionService.Predict or PredictionService.Explain. Corresponds to the JSON property supportedOutputStorageFormats

Returns:

  • (Array<String>)


15141
15142
15143
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15141

def supported_output_storage_formats
  @supported_output_storage_formats
end

#training_pipelineString

Output only. The resource name of the TrainingPipeline that uploaded this Model, if any. Corresponds to the JSON property trainingPipeline

Returns:

  • (String)


15147
15148
15149
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15147

def training_pipeline
  @training_pipeline
end

#update_timeString

Output only. Timestamp when this Model was most recently updated. Corresponds to the JSON property updateTime

Returns:

  • (String)


15152
15153
15154
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15152

def update_time
  @update_time
end

#version_aliasesArray<String>

User provided version aliases so that a model version can be referenced via alias (i.e. projects/project/locations/location/models/model_id@ version_alias`instead of auto-generated version id (i.e.projects/project/ locations/location/models/model_id@version_id). The format is a-z0,126 [a-z0-9] to distinguish from version_id. A default version alias will be created for the first version of the model, and there must be exactly one default version alias for a model. Corresponds to the JSON propertyversionAliases`

Returns:

  • (Array<String>)


15163
15164
15165
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15163

def version_aliases
  @version_aliases
end

#version_create_timeString

Output only. Timestamp when this version was created. Corresponds to the JSON property versionCreateTime

Returns:

  • (String)


15168
15169
15170
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15168

def version_create_time
  @version_create_time
end

#version_descriptionString

The description of this version. Corresponds to the JSON property versionDescription

Returns:

  • (String)


15173
15174
15175
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15173

def version_description
  @version_description
end

#version_idString

Output only. Immutable. The version ID of the model. A new version is committed when a new model version is uploaded or trained under an existing model id. It is an auto-incrementing decimal number in string representation. Corresponds to the JSON property versionId

Returns:

  • (String)


15180
15181
15182
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15180

def version_id
  @version_id
end

#version_update_timeString

Output only. Timestamp when this version was most recently updated. Corresponds to the JSON property versionUpdateTime

Returns:

  • (String)


15185
15186
15187
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15185

def version_update_time
  @version_update_time
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 15192

def update!(**args)
  @artifact_uri = args[:artifact_uri] if args.key?(:artifact_uri)
  @base_model_source = args[:base_model_source] if args.key?(:base_model_source)
  @container_spec = args[:container_spec] if args.key?(:container_spec)
  @create_time = args[:create_time] if args.key?(:create_time)
  @deployed_models = args[:deployed_models] if args.key?(:deployed_models)
  @description = args[:description] if args.key?(:description)
  @display_name = args[:display_name] if args.key?(:display_name)
  @encryption_spec = args[:encryption_spec] if args.key?(:encryption_spec)
  @etag = args[:etag] if args.key?(:etag)
  @explanation_spec = args[:explanation_spec] if args.key?(:explanation_spec)
  @labels = args[:labels] if args.key?(:labels)
  @metadata = args[:metadata] if args.key?(:metadata)
  @metadata_artifact = args[:metadata_artifact] if args.key?(:metadata_artifact)
  @metadata_schema_uri = args[:metadata_schema_uri] if args.key?(:metadata_schema_uri)
  @model_source_info = args[:model_source_info] if args.key?(:model_source_info)
  @name = args[:name] if args.key?(:name)
  @original_model_info = args[:original_model_info] if args.key?(:original_model_info)
  @predict_schemata = args[:predict_schemata] if args.key?(:predict_schemata)
  @supported_deployment_resources_types = args[:supported_deployment_resources_types] if args.key?(:supported_deployment_resources_types)
  @supported_export_formats = args[:supported_export_formats] if args.key?(:supported_export_formats)
  @supported_input_storage_formats = args[:supported_input_storage_formats] if args.key?(:supported_input_storage_formats)
  @supported_output_storage_formats = args[:supported_output_storage_formats] if args.key?(:supported_output_storage_formats)
  @training_pipeline = args[:training_pipeline] if args.key?(:training_pipeline)
  @update_time = args[:update_time] if args.key?(:update_time)
  @version_aliases = args[:version_aliases] if args.key?(:version_aliases)
  @version_create_time = args[:version_create_time] if args.key?(:version_create_time)
  @version_description = args[:version_description] if args.key?(:version_description)
  @version_id = args[:version_id] if args.key?(:version_id)
  @version_update_time = args[:version_update_time] if args.key?(:version_update_time)
end