Class: Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsClassificationEvaluationMetrics
- Inherits:
-
Object
- Object
- Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsClassificationEvaluationMetrics
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/aiplatform_v1beta1/classes.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb
Overview
Metrics for classification evaluation results.
Instance Attribute Summary collapse
-
#au_prc ⇒ Float
The Area Under Precision-Recall Curve metric.
-
#au_roc ⇒ Float
The Area Under Receiver Operating Characteristic curve metric.
-
#confidence_metrics ⇒ Array<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics>
Metrics for each
confidenceThresholdin 0.00,0.05,0.10,...,0.95,0.96,0.97,0. -
#confusion_matrix ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsConfusionMatrix
Confusion matrix of the evaluation.
-
#log_loss ⇒ Float
The Log Loss metric.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsClassificationEvaluationMetrics
constructor
A new instance of GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsClassificationEvaluationMetrics.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsClassificationEvaluationMetrics
Returns a new instance of GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsClassificationEvaluationMetrics.
24963 24964 24965 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 24963 def initialize(**args) update!(**args) end |
Instance Attribute Details
#au_prc ⇒ Float
The Area Under Precision-Recall Curve metric. Micro-averaged for the overall
evaluation.
Corresponds to the JSON property auPrc
24936 24937 24938 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 24936 def au_prc @au_prc end |
#au_roc ⇒ Float
The Area Under Receiver Operating Characteristic curve metric. Micro-averaged
for the overall evaluation.
Corresponds to the JSON property auRoc
24942 24943 24944 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 24942 def au_roc @au_roc end |
#confidence_metrics ⇒ Array<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics>
Metrics for each confidenceThreshold in 0.00,0.05,0.10,...,0.95,0.96,0.97,0.
98,0.99 and positionThreshold = INT32_MAX_VALUE. ROC and precision-recall
curves, and other aggregated metrics are derived from them. The confidence
metrics entries may also be supplied for additional values of
positionThreshold, but from these no aggregated metrics are computed.
Corresponds to the JSON property confidenceMetrics
24951 24952 24953 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 24951 def confidence_metrics @confidence_metrics end |
#confusion_matrix ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsConfusionMatrix
Confusion matrix of the evaluation.
Corresponds to the JSON property confusionMatrix
24956 24957 24958 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 24956 def confusion_matrix @confusion_matrix end |
#log_loss ⇒ Float
The Log Loss metric.
Corresponds to the JSON property logLoss
24961 24962 24963 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 24961 def log_loss @log_loss end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
24968 24969 24970 24971 24972 24973 24974 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 24968 def update!(**args) @au_prc = args[:au_prc] if args.key?(:au_prc) @au_roc = args[:au_roc] if args.key?(:au_roc) @confidence_metrics = args[:confidence_metrics] if args.key?(:confidence_metrics) @confusion_matrix = args[:confusion_matrix] if args.key?(:confusion_matrix) @log_loss = args[:log_loss] if args.key?(:log_loss) end |