Class: Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1FeatureViewVectorSearchConfig

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/aiplatform_v1beta1/classes.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb

Overview

Deprecated. Use IndexConfig instead.

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1FeatureViewVectorSearchConfig

Returns a new instance of GoogleCloudAiplatformV1beta1FeatureViewVectorSearchConfig.



9827
9828
9829
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 9827

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#brute_force_configGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1FeatureViewVectorSearchConfigBruteForceConfig

Optional. Configuration options for using brute force search, which simply implements the standard linear search in the database for each query. It is primarily meant for benchmarking and to generate the ground truth for approximate search. Corresponds to the JSON property bruteForceConfig



9787
9788
9789
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 9787

def brute_force_config
  @brute_force_config
end

#crowding_columnString

Optional. Column of crowding. This column contains crowding attribute which is a constraint on a neighbor list produced by FeatureOnlineStoreService. SearchNearestEntities to diversify search results. If NearestNeighborQuery. per_crowding_attribute_neighbor_count is set to K in SearchNearestEntitiesRequest, it's guaranteed that no more than K entities of the same crowding attribute are returned in the response. Corresponds to the JSON property crowdingColumn

Returns:

  • (String)


9797
9798
9799
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 9797

def crowding_column
  @crowding_column
end

#distance_measure_typeString

Optional. The distance measure used in nearest neighbor search. Corresponds to the JSON property distanceMeasureType

Returns:

  • (String)


9802
9803
9804
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 9802

def distance_measure_type
  @distance_measure_type
end

#embedding_columnString

Optional. Column of embedding. This column contains the source data to create index for vector search. embedding_column must be set when using vector search. Corresponds to the JSON property embeddingColumn

Returns:

  • (String)


9808
9809
9810
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 9808

def embedding_column
  @embedding_column
end

#embedding_dimensionFixnum

Optional. The number of dimensions of the input embedding. Corresponds to the JSON property embeddingDimension

Returns:

  • (Fixnum)


9813
9814
9815
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 9813

def embedding_dimension
  @embedding_dimension
end

#filter_columnsArray<String>

Optional. Columns of features that're used to filter vector search results. Corresponds to the JSON property filterColumns

Returns:

  • (Array<String>)


9818
9819
9820
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 9818

def filter_columns
  @filter_columns
end

#tree_ah_configGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1FeatureViewVectorSearchConfigTreeAhConfig

Optional. Configuration options for the tree-AH algorithm (Shallow tree + Asymmetric Hashing). Please refer to this paper for more details: https:// arxiv.org/abs/1908.10396 Corresponds to the JSON property treeAhConfig



9825
9826
9827
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 9825

def tree_ah_config
  @tree_ah_config
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



9832
9833
9834
9835
9836
9837
9838
9839
9840
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 9832

def update!(**args)
  @brute_force_config = args[:brute_force_config] if args.key?(:brute_force_config)
  @crowding_column = args[:crowding_column] if args.key?(:crowding_column)
  @distance_measure_type = args[:distance_measure_type] if args.key?(:distance_measure_type)
  @embedding_column = args[:embedding_column] if args.key?(:embedding_column)
  @embedding_dimension = args[:embedding_dimension] if args.key?(:embedding_dimension)
  @filter_columns = args[:filter_columns] if args.key?(:filter_columns)
  @tree_ah_config = args[:tree_ah_config] if args.key?(:tree_ah_config)
end