Class: Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1IndexDatapoint
- Inherits:
-
Object
- Object
- Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1IndexDatapoint
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/aiplatform_v1beta1/classes.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb
Overview
A datapoint of Index.
Instance Attribute Summary collapse
-
#crowding_tag ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1IndexDatapointCrowdingTag
Crowding tag is a constraint on a neighbor list produced by nearest neighbor search requiring that no more than some value k' of the k neighbors returned have the same value of crowding_attribute.
-
#datapoint_id ⇒ String
Required.
-
#feature_vector ⇒ Array<Float>
Required.
-
#numeric_restricts ⇒ Array<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1IndexDatapointNumericRestriction>
Optional.
-
#restricts ⇒ Array<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1IndexDatapointRestriction>
Optional.
-
#sparse_embedding ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1IndexDatapointSparseEmbedding
Feature embedding vector for sparse index.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1IndexDatapoint
constructor
A new instance of GoogleCloudAiplatformV1beta1IndexDatapoint.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1IndexDatapoint
Returns a new instance of GoogleCloudAiplatformV1beta1IndexDatapoint.
12369 12370 12371 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 12369 def initialize(**args) update!(**args) end |
Instance Attribute Details
#crowding_tag ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1IndexDatapointCrowdingTag
Crowding tag is a constraint on a neighbor list produced by nearest neighbor
search requiring that no more than some value k' of the k neighbors returned
have the same value of crowding_attribute.
Corresponds to the JSON property crowdingTag
12335 12336 12337 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 12335 def crowding_tag @crowding_tag end |
#datapoint_id ⇒ String
Required. Unique identifier of the datapoint.
Corresponds to the JSON property datapointId
12340 12341 12342 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 12340 def datapoint_id @datapoint_id end |
#feature_vector ⇒ Array<Float>
Required. Feature embedding vector for dense index. An array of numbers with
the length of [NearestNeighborSearchConfig.dimensions].
Corresponds to the JSON property featureVector
12346 12347 12348 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 12346 def feature_vector @feature_vector end |
#numeric_restricts ⇒ Array<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1IndexDatapointNumericRestriction>
Optional. List of Restrict of the datapoint, used to perform "restricted
searches" where boolean rule are used to filter the subset of the database
eligible for matching. This uses numeric comparisons.
Corresponds to the JSON property numericRestricts
12353 12354 12355 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 12353 def numeric_restricts @numeric_restricts end |
#restricts ⇒ Array<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1IndexDatapointRestriction>
Optional. List of Restrict of the datapoint, used to perform "restricted
searches" where boolean rule are used to filter the subset of the database
eligible for matching. This uses categorical tokens. See: https://cloud.google.
com/vertex-ai/docs/matching-engine/filtering
Corresponds to the JSON property restricts
12361 12362 12363 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 12361 def restricts @restricts end |
#sparse_embedding ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1IndexDatapointSparseEmbedding
Feature embedding vector for sparse index. An array of numbers whose values
are located in the specified dimensions.
Corresponds to the JSON property sparseEmbedding
12367 12368 12369 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 12367 def @sparse_embedding end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
12374 12375 12376 12377 12378 12379 12380 12381 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 12374 def update!(**args) @crowding_tag = args[:crowding_tag] if args.key?(:crowding_tag) @datapoint_id = args[:datapoint_id] if args.key?(:datapoint_id) @feature_vector = args[:feature_vector] if args.key?(:feature_vector) @numeric_restricts = args[:numeric_restricts] if args.key?(:numeric_restricts) @restricts = args[:restricts] if args.key?(:restricts) @sparse_embedding = args[:sparse_embedding] if args.key?(:sparse_embedding) end |