Class: Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ModelMonitoringSchema
- Inherits:
-
Object
- Object
- Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ModelMonitoringSchema
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/aiplatform_v1beta1/classes.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb
Overview
The Model Monitoring Schema definition.
Instance Attribute Summary collapse
-
#feature_fields ⇒ Array<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ModelMonitoringSchemaFieldSchema>
Feature names of the model.
-
#ground_truth_fields ⇒ Array<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ModelMonitoringSchemaFieldSchema>
Target /ground truth names of the model.
-
#prediction_fields ⇒ Array<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ModelMonitoringSchemaFieldSchema>
Prediction output names of the model.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1ModelMonitoringSchema
constructor
A new instance of GoogleCloudAiplatformV1beta1ModelMonitoringSchema.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1ModelMonitoringSchema
Returns a new instance of GoogleCloudAiplatformV1beta1ModelMonitoringSchema.
17778 17779 17780 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 17778 def initialize(**args) update!(**args) end |
Instance Attribute Details
#feature_fields ⇒ Array<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ModelMonitoringSchemaFieldSchema>
Feature names of the model. Vertex AI will try to match the features from your
dataset as follows: * For 'csv' files, the header names are required, and we
will extract the corresponding feature values when the header names align with
the feature names. * For 'jsonl' files, we will extract the corresponding
feature values if the key names match the feature names. Note: Nested features
are not supported, so please ensure your features are flattened. Ensure the
feature values are scalar or an array of scalars. * For 'bigquery' dataset, we
will extract the corresponding feature values if the column names match the
feature names. Note: The column type can be a scalar or an array of scalars.
STRUCT or JSON types are not supported. You may use SQL queries to select or
aggregate the relevant features from your original table. However, ensure that
the 'schema' of the query results meets our requirements. * For the Vertex AI
Endpoint Request Response Logging table or Vertex AI Batch Prediction Job
results. If the instance_type is an array, ensure that the sequence in
feature_fields matches the order of features in the prediction instance. We
will match the feature with the array in the order specified in [
feature_fields].
Corresponds to the JSON property featureFields
17761 17762 17763 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 17761 def feature_fields @feature_fields end |
#ground_truth_fields ⇒ Array<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ModelMonitoringSchemaFieldSchema>
Target /ground truth names of the model.
Corresponds to the JSON property groundTruthFields
17766 17767 17768 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 17766 def ground_truth_fields @ground_truth_fields end |
#prediction_fields ⇒ Array<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ModelMonitoringSchemaFieldSchema>
Prediction output names of the model. The requirements are the same as the
feature_fields. For AutoML Tables, the prediction output name presented in
schema will be: predicted_
target_column`, the
target_column` is the one
you specified when you train the model. For Prediction output drift analysis: *
AutoML Classification, the distribution of the argmax label will be analyzed.
- AutoML Regression, the distribution of the value will be analyzed.
Corresponds to the JSON property
predictionFields
17776 17777 17778 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 17776 def prediction_fields @prediction_fields end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
17783 17784 17785 17786 17787 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 17783 def update!(**args) @feature_fields = args[:feature_fields] if args.key?(:feature_fields) @ground_truth_fields = args[:ground_truth_fields] if args.key?(:ground_truth_fields) @prediction_fields = args[:prediction_fields] if args.key?(:prediction_fields) end |