Class: Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/aiplatform_v1beta1/classes.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics

Returns a new instance of GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics.



25550
25551
25552
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25550

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#confidence_thresholdFloat

Metrics are computed with an assumption that the Model never returns predictions with score lower than this value. Corresponds to the JSON property confidenceThreshold

Returns:

  • (Float)


25459
25460
25461
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25459

def confidence_threshold
  @confidence_threshold
end

#confusion_matrixGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsConfusionMatrix

Confusion matrix of the evaluation for this confidence_threshold. Corresponds to the JSON property confusionMatrix



25464
25465
25466
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25464

def confusion_matrix
  @confusion_matrix
end

#f1_scoreFloat

The harmonic mean of recall and precision. For summary metrics, it computes the micro-averaged F1 score. Corresponds to the JSON property f1Score

Returns:

  • (Float)


25470
25471
25472
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25470

def f1_score
  @f1_score
end

#f1_score_at1Float

The harmonic mean of recallAt1 and precisionAt1. Corresponds to the JSON property f1ScoreAt1

Returns:

  • (Float)


25475
25476
25477
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25475

def f1_score_at1
  @f1_score_at1
end

#f1_score_macroFloat

Macro-averaged F1 Score. Corresponds to the JSON property f1ScoreMacro

Returns:

  • (Float)


25480
25481
25482
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25480

def f1_score_macro
  @f1_score_macro
end

#f1_score_microFloat

Micro-averaged F1 Score. Corresponds to the JSON property f1ScoreMicro

Returns:

  • (Float)


25485
25486
25487
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25485

def f1_score_micro
  @f1_score_micro
end

#false_negative_countFixnum

The number of ground truth labels that are not matched by a Model created label. Corresponds to the JSON property falseNegativeCount

Returns:

  • (Fixnum)


25491
25492
25493
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25491

def false_negative_count
  @false_negative_count
end

#false_positive_countFixnum

The number of Model created labels that do not match a ground truth label. Corresponds to the JSON property falsePositiveCount

Returns:

  • (Fixnum)


25496
25497
25498
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25496

def false_positive_count
  @false_positive_count
end

#false_positive_rateFloat

False Positive Rate for the given confidence threshold. Corresponds to the JSON property falsePositiveRate

Returns:

  • (Float)


25501
25502
25503
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25501

def false_positive_rate
  @false_positive_rate
end

#false_positive_rate_at1Float

The False Positive Rate when only considering the label that has the highest prediction score and not below the confidence threshold for each DataItem. Corresponds to the JSON property falsePositiveRateAt1

Returns:

  • (Float)


25507
25508
25509
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25507

def false_positive_rate_at1
  @false_positive_rate_at1
end

#max_predictionsFixnum

Metrics are computed with an assumption that the Model always returns at most this many predictions (ordered by their score, descendingly), but they all still need to meet the confidenceThreshold. Corresponds to the JSON property maxPredictions

Returns:

  • (Fixnum)


25514
25515
25516
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25514

def max_predictions
  @max_predictions
end

#precisionFloat

Precision for the given confidence threshold. Corresponds to the JSON property precision

Returns:

  • (Float)


25519
25520
25521
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25519

def precision
  @precision
end

#precision_at1Float

The precision when only considering the label that has the highest prediction score and not below the confidence threshold for each DataItem. Corresponds to the JSON property precisionAt1

Returns:

  • (Float)


25525
25526
25527
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25525

def precision_at1
  @precision_at1
end

#recallFloat

Recall (True Positive Rate) for the given confidence threshold. Corresponds to the JSON property recall

Returns:

  • (Float)


25530
25531
25532
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25530

def recall
  @recall
end

#recall_at1Float

The Recall (True Positive Rate) when only considering the label that has the highest prediction score and not below the confidence threshold for each DataItem. Corresponds to the JSON property recallAt1

Returns:

  • (Float)


25537
25538
25539
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25537

def recall_at1
  @recall_at1
end

#true_negative_countFixnum

The number of labels that were not created by the Model, but if they would, they would not match a ground truth label. Corresponds to the JSON property trueNegativeCount

Returns:

  • (Fixnum)


25543
25544
25545
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25543

def true_negative_count
  @true_negative_count
end

#true_positive_countFixnum

The number of Model created labels that match a ground truth label. Corresponds to the JSON property truePositiveCount

Returns:

  • (Fixnum)


25548
25549
25550
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25548

def true_positive_count
  @true_positive_count
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



25555
25556
25557
25558
25559
25560
25561
25562
25563
25564
25565
25566
25567
25568
25569
25570
25571
25572
25573
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25555

def update!(**args)
  @confidence_threshold = args[:confidence_threshold] if args.key?(:confidence_threshold)
  @confusion_matrix = args[:confusion_matrix] if args.key?(:confusion_matrix)
  @f1_score = args[:f1_score] if args.key?(:f1_score)
  @f1_score_at1 = args[:f1_score_at1] if args.key?(:f1_score_at1)
  @f1_score_macro = args[:f1_score_macro] if args.key?(:f1_score_macro)
  @f1_score_micro = args[:f1_score_micro] if args.key?(:f1_score_micro)
  @false_negative_count = args[:false_negative_count] if args.key?(:false_negative_count)
  @false_positive_count = args[:false_positive_count] if args.key?(:false_positive_count)
  @false_positive_rate = args[:false_positive_rate] if args.key?(:false_positive_rate)
  @false_positive_rate_at1 = args[:false_positive_rate_at1] if args.key?(:false_positive_rate_at1)
  @max_predictions = args[:max_predictions] if args.key?(:max_predictions)
  @precision = args[:precision] if args.key?(:precision)
  @precision_at1 = args[:precision_at1] if args.key?(:precision_at1)
  @recall = args[:recall] if args.key?(:recall)
  @recall_at1 = args[:recall_at1] if args.key?(:recall_at1)
  @true_negative_count = args[:true_negative_count] if args.key?(:true_negative_count)
  @true_positive_count = args[:true_positive_count] if args.key?(:true_positive_count)
end