Class: Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsForecastingEvaluationMetrics
- Inherits:
-
Object
- Object
- Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsForecastingEvaluationMetrics
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/aiplatform_v1beta1/classes.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb
Overview
Metrics for forecasting evaluation results.
Instance Attribute Summary collapse
-
#mean_absolute_error ⇒ Float
Mean Absolute Error (MAE).
-
#mean_absolute_percentage_error ⇒ Float
Mean absolute percentage error.
-
#quantile_metrics ⇒ Array<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsForecastingEvaluationMetricsQuantileMetricsEntry>
The quantile metrics entries for each quantile.
-
#r_squared ⇒ Float
Coefficient of determination as Pearson correlation coefficient.
-
#root_mean_squared_error ⇒ Float
Root Mean Squared Error (RMSE).
-
#root_mean_squared_log_error ⇒ Float
Root mean squared log error.
-
#root_mean_squared_percentage_error ⇒ Float
Root Mean Square Percentage Error.
-
#weighted_absolute_percentage_error ⇒ Float
Weighted Absolute Percentage Error.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsForecastingEvaluationMetrics
constructor
A new instance of GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsForecastingEvaluationMetrics.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsForecastingEvaluationMetrics
Returns a new instance of GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsForecastingEvaluationMetrics.
25688 25689 25690 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25688 def initialize(**args) update!(**args) end |
Instance Attribute Details
#mean_absolute_error ⇒ Float
Mean Absolute Error (MAE).
Corresponds to the JSON property meanAbsoluteError
25645 25646 25647 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25645 def mean_absolute_error @mean_absolute_error end |
#mean_absolute_percentage_error ⇒ Float
Mean absolute percentage error. Infinity when there are zeros in the ground
truth.
Corresponds to the JSON property meanAbsolutePercentageError
25651 25652 25653 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25651 def mean_absolute_percentage_error @mean_absolute_percentage_error end |
#quantile_metrics ⇒ Array<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsForecastingEvaluationMetricsQuantileMetricsEntry>
The quantile metrics entries for each quantile.
Corresponds to the JSON property quantileMetrics
25656 25657 25658 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25656 def quantile_metrics @quantile_metrics end |
#r_squared ⇒ Float
Coefficient of determination as Pearson correlation coefficient. Undefined
when ground truth or predictions are constant or near constant.
Corresponds to the JSON property rSquared
25662 25663 25664 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25662 def r_squared @r_squared end |
#root_mean_squared_error ⇒ Float
Root Mean Squared Error (RMSE).
Corresponds to the JSON property rootMeanSquaredError
25667 25668 25669 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25667 def root_mean_squared_error @root_mean_squared_error end |
#root_mean_squared_log_error ⇒ Float
Root mean squared log error. Undefined when there are negative ground truth
values or predictions.
Corresponds to the JSON property rootMeanSquaredLogError
25673 25674 25675 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25673 def root_mean_squared_log_error @root_mean_squared_log_error end |
#root_mean_squared_percentage_error ⇒ Float
Root Mean Square Percentage Error. Square root of MSPE. Undefined/imaginary
when MSPE is negative.
Corresponds to the JSON property rootMeanSquaredPercentageError
25679 25680 25681 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25679 def root_mean_squared_percentage_error @root_mean_squared_percentage_error end |
#weighted_absolute_percentage_error ⇒ Float
Weighted Absolute Percentage Error. Does not use weights, this is just what
the metric is called. Undefined if actual values sum to zero. Will be very
large if actual values sum to a very small number.
Corresponds to the JSON property weightedAbsolutePercentageError
25686 25687 25688 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25686 def weighted_absolute_percentage_error @weighted_absolute_percentage_error end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
25693 25694 25695 25696 25697 25698 25699 25700 25701 25702 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25693 def update!(**args) @mean_absolute_error = args[:mean_absolute_error] if args.key?(:mean_absolute_error) @mean_absolute_percentage_error = args[:mean_absolute_percentage_error] if args.key?(:mean_absolute_percentage_error) @quantile_metrics = args[:quantile_metrics] if args.key?(:quantile_metrics) @r_squared = args[:r_squared] if args.key?(:r_squared) @root_mean_squared_error = args[:root_mean_squared_error] if args.key?(:root_mean_squared_error) @root_mean_squared_log_error = args[:root_mean_squared_log_error] if args.key?(:root_mean_squared_log_error) @root_mean_squared_percentage_error = args[:root_mean_squared_percentage_error] if args.key?(:root_mean_squared_percentage_error) @weighted_absolute_percentage_error = args[:weighted_absolute_percentage_error] if args.key?(:weighted_absolute_percentage_error) end |