Class: Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsImageSegmentationEvaluationMetricsConfidenceMetricsEntry
- Inherits:
-
Object
- Object
- Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsImageSegmentationEvaluationMetricsConfidenceMetricsEntry
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/aiplatform_v1beta1/classes.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb
Instance Attribute Summary collapse
-
#confidence_threshold ⇒ Float
Metrics are computed with an assumption that the model never returns predictions with score lower than this value.
-
#confusion_matrix ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsConfusionMatrix
Confusion matrix for the given confidence threshold.
-
#dice_score_coefficient ⇒ Float
DSC or the F1 score, The harmonic mean of recall and precision.
-
#iou_score ⇒ Float
The intersection-over-union score.
-
#precision ⇒ Float
Precision for the given confidence threshold.
-
#recall ⇒ Float
Recall (True Positive Rate) for the given confidence threshold.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsImageSegmentationEvaluationMetricsConfidenceMetricsEntry
constructor
A new instance of GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsImageSegmentationEvaluationMetricsConfidenceMetricsEntry.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsImageSegmentationEvaluationMetricsConfidenceMetricsEntry
Returns a new instance of GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsImageSegmentationEvaluationMetricsConfidenceMetricsEntry.
25857 25858 25859 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25857 def initialize(**args) update!(**args) end |
Instance Attribute Details
#confidence_threshold ⇒ Float
Metrics are computed with an assumption that the model never returns
predictions with score lower than this value.
Corresponds to the JSON property confidenceThreshold
25829 25830 25831 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25829 def confidence_threshold @confidence_threshold end |
#confusion_matrix ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsConfusionMatrix
Confusion matrix for the given confidence threshold.
Corresponds to the JSON property confusionMatrix
25834 25835 25836 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25834 def confusion_matrix @confusion_matrix end |
#dice_score_coefficient ⇒ Float
DSC or the F1 score, The harmonic mean of recall and precision.
Corresponds to the JSON property diceScoreCoefficient
25839 25840 25841 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25839 def dice_score_coefficient @dice_score_coefficient end |
#iou_score ⇒ Float
The intersection-over-union score. The measure of overlap of the annotation's
category mask with ground truth category mask on the DataItem.
Corresponds to the JSON property iouScore
25845 25846 25847 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25845 def iou_score @iou_score end |
#precision ⇒ Float
Precision for the given confidence threshold.
Corresponds to the JSON property precision
25850 25851 25852 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25850 def precision @precision end |
#recall ⇒ Float
Recall (True Positive Rate) for the given confidence threshold.
Corresponds to the JSON property recall
25855 25856 25857 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25855 def recall @recall end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
25862 25863 25864 25865 25866 25867 25868 25869 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 25862 def update!(**args) @confidence_threshold = args[:confidence_threshold] if args.key?(:confidence_threshold) @confusion_matrix = args[:confusion_matrix] if args.key?(:confusion_matrix) @dice_score_coefficient = args[:dice_score_coefficient] if args.key?(:dice_score_coefficient) @iou_score = args[:iou_score] if args.key?(:iou_score) @precision = args[:precision] if args.key?(:precision) @recall = args[:recall] if args.key?(:recall) end |