Class: Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionTftForecastingInputsTransformation
- Inherits:
-
Object
- Object
- Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionTftForecastingInputsTransformation
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/aiplatform_v1beta1/classes.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb
Instance Attribute Summary collapse
-
#auto ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionTftForecastingInputsTransformationAutoTransformation
Training pipeline will infer the proper transformation based on the statistic of dataset.
-
#categorical ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionTftForecastingInputsTransformationCategoricalTransformation
Training pipeline will perform following transformation functions.
-
#numeric ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionTftForecastingInputsTransformationNumericTransformation
Training pipeline will perform following transformation functions.
-
#text ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionTftForecastingInputsTransformationTextTransformation
Training pipeline will perform following transformation functions.
-
#timestamp ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionTftForecastingInputsTransformationTimestampTransformation
Training pipeline will perform following transformation functions.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionTftForecastingInputsTransformation
constructor
A new instance of GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionTftForecastingInputsTransformation.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionTftForecastingInputsTransformation
Returns a new instance of GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionTftForecastingInputsTransformation.
30534 30535 30536 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 30534 def initialize(**args) update!(**args) end |
Instance Attribute Details
#auto ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionTftForecastingInputsTransformationAutoTransformation
Training pipeline will infer the proper transformation based on the statistic
of dataset.
Corresponds to the JSON property auto
30494 30495 30496 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 30494 def auto @auto end |
#categorical ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionTftForecastingInputsTransformationCategoricalTransformation
Training pipeline will perform following transformation functions. * The
categorical string as is--no change to case, punctuation, spelling, tense, and
so on. * Convert the category name to a dictionary lookup index and generate
an embedding for each index. * Categories that appear less than 5 times in the
training dataset are treated as the "unknown" category. The "unknown" category
gets its own special lookup index and resulting embedding.
Corresponds to the JSON property categorical
30504 30505 30506 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 30504 def categorical @categorical end |
#numeric ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionTftForecastingInputsTransformationNumericTransformation
Training pipeline will perform following transformation functions. * The value
converted to float32. * The z_score of the value. * log(value+1) when the
value is greater than or equal to 0. Otherwise, this transformation is not
applied and the value is considered a missing value. * z_score of log(value+1)
when the value is greater than or equal to 0. Otherwise, this transformation
is not applied and the value is considered a missing value.
Corresponds to the JSON property numeric
30514 30515 30516 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 30514 def numeric @numeric end |
#text ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionTftForecastingInputsTransformationTextTransformation
Training pipeline will perform following transformation functions. * The text
as is--no change to case, punctuation, spelling, tense, and so on. * Convert
the category name to a dictionary lookup index and generate an embedding for
each index.
Corresponds to the JSON property text
30522 30523 30524 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 30522 def text @text end |
#timestamp ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionTftForecastingInputsTransformationTimestampTransformation
Training pipeline will perform following transformation functions. * Apply the
transformation functions for Numerical columns. * Determine the year, month,
day,and weekday. Treat each value from the timestamp as a Categorical column. *
Invalid numerical values (for example, values that fall outside of a typical
timestamp range, or are extreme values) receive no special treatment and are
not removed.
Corresponds to the JSON property timestamp
30532 30533 30534 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 30532 def @timestamp end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
30539 30540 30541 30542 30543 30544 30545 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 30539 def update!(**args) @auto = args[:auto] if args.key?(:auto) @categorical = args[:categorical] if args.key?(:categorical) @numeric = args[:numeric] if args.key?(:numeric) @text = args[:text] if args.key?(:text) @timestamp = args[:timestamp] if args.key?(:timestamp) end |