Class: Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1TrainingPipeline

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/aiplatform_v1beta1/classes.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb

Overview

The TrainingPipeline orchestrates tasks associated with training a Model. It always executes the training task, and optionally may also export data from Vertex AI's Dataset which becomes the training input, upload the Model to Vertex AI, and evaluate the Model.

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1TrainingPipeline

Returns a new instance of GoogleCloudAiplatformV1beta1TrainingPipeline.



35109
35110
35111
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 35109

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#create_timeString

Output only. Time when the TrainingPipeline was created. Corresponds to the JSON property createTime

Returns:

  • (String)


34998
34999
35000
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 34998

def create_time
  @create_time
end

#display_nameString

Required. The user-defined name of this TrainingPipeline. Corresponds to the JSON property displayName

Returns:

  • (String)


35003
35004
35005
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 35003

def display_name
  @display_name
end

#encryption_specGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1EncryptionSpec

Represents a customer-managed encryption key spec that can be applied to a top- level resource. Corresponds to the JSON property encryptionSpec



35009
35010
35011
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 35009

def encryption_spec
  @encryption_spec
end

#end_timeString

Output only. Time when the TrainingPipeline entered any of the following states: PIPELINE_STATE_SUCCEEDED, PIPELINE_STATE_FAILED, PIPELINE_STATE_CANCELLED. Corresponds to the JSON property endTime

Returns:

  • (String)


35016
35017
35018
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 35016

def end_time
  @end_time
end

#errorGoogle::Apis::AiplatformV1beta1::GoogleRpcStatus

The Status type defines a logical error model that is suitable for different programming environments, including REST APIs and RPC APIs. It is used by gRPC. Each Status message contains three pieces of data: error code, error message, and error details. You can find out more about this error model and how to work with it in the API Design Guide. Corresponds to the JSON property error



35026
35027
35028
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 35026

def error
  @error
end

#input_data_configGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1InputDataConfig

Specifies Vertex AI owned input data to be used for training, and possibly evaluating, the Model. Corresponds to the JSON property inputDataConfig



35032
35033
35034
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 35032

def input_data_config
  @input_data_config
end

#labelsHash<String,String>

The labels with user-defined metadata to organize TrainingPipelines. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels. Corresponds to the JSON property labels

Returns:

  • (Hash<String,String>)


35041
35042
35043
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 35041

def labels
  @labels
end

#model_idString

Optional. The ID to use for the uploaded Model, which will become the final component of the model resource name. This value may be up to 63 characters, and valid characters are [a-z0-9_-]. The first character cannot be a number or hyphen. Corresponds to the JSON property modelId

Returns:

  • (String)


35049
35050
35051
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 35049

def model_id
  @model_id
end

#model_to_uploadGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1Model

A trained machine learning Model. Corresponds to the JSON property modelToUpload



35054
35055
35056
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 35054

def model_to_upload
  @model_to_upload
end

#nameString

Output only. Resource name of the TrainingPipeline. Corresponds to the JSON property name

Returns:

  • (String)


35059
35060
35061
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 35059

def name
  @name
end

#parent_modelString

Optional. When specify this field, the model_to_upload will not be uploaded as a new model, instead, it will become a new version of this parent_model. Corresponds to the JSON property parentModel

Returns:

  • (String)


35065
35066
35067
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 35065

def parent_model
  @parent_model
end

#start_timeString

Output only. Time when the TrainingPipeline for the first time entered the PIPELINE_STATE_RUNNING state. Corresponds to the JSON property startTime

Returns:

  • (String)


35071
35072
35073
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 35071

def start_time
  @start_time
end

#stateString

Output only. The detailed state of the pipeline. Corresponds to the JSON property state

Returns:

  • (String)


35076
35077
35078
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 35076

def state
  @state
end

#training_task_definitionString

Required. A Google Cloud Storage path to the YAML file that defines the training task which is responsible for producing the model artifact, and may also include additional auxiliary work. The definition files that can be used here are found in gs://google-cloud-aiplatform/schema/trainingjob/definition/. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access. Corresponds to the JSON property trainingTaskDefinition

Returns:

  • (String)


35087
35088
35089
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 35087

def training_task_definition
  @training_task_definition
end

#training_task_inputsObject

Required. The training task's parameter(s), as specified in the training_task_definition's inputs. Corresponds to the JSON property trainingTaskInputs

Returns:

  • (Object)


35093
35094
35095
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 35093

def training_task_inputs
  @training_task_inputs
end

#training_task_metadataObject

Output only. The metadata information as specified in the training_task_definition's metadata. This metadata is an auxiliary runtime and final information about the training task. While the pipeline is running this information is populated only at a best effort basis. Only present if the pipeline's training_task_definition contains metadata object. Corresponds to the JSON property trainingTaskMetadata

Returns:

  • (Object)


35102
35103
35104
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 35102

def 
  @training_task_metadata
end

#update_timeString

Output only. Time when the TrainingPipeline was most recently updated. Corresponds to the JSON property updateTime

Returns:

  • (String)


35107
35108
35109
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 35107

def update_time
  @update_time
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



35114
35115
35116
35117
35118
35119
35120
35121
35122
35123
35124
35125
35126
35127
35128
35129
35130
35131
35132
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 35114

def update!(**args)
  @create_time = args[:create_time] if args.key?(:create_time)
  @display_name = args[:display_name] if args.key?(:display_name)
  @encryption_spec = args[:encryption_spec] if args.key?(:encryption_spec)
  @end_time = args[:end_time] if args.key?(:end_time)
  @error = args[:error] if args.key?(:error)
  @input_data_config = args[:input_data_config] if args.key?(:input_data_config)
  @labels = args[:labels] if args.key?(:labels)
  @model_id = args[:model_id] if args.key?(:model_id)
  @model_to_upload = args[:model_to_upload] if args.key?(:model_to_upload)
  @name = args[:name] if args.key?(:name)
  @parent_model = args[:parent_model] if args.key?(:parent_model)
  @start_time = args[:start_time] if args.key?(:start_time)
  @state = args[:state] if args.key?(:state)
  @training_task_definition = args[:training_task_definition] if args.key?(:training_task_definition)
  @training_task_inputs = args[:training_task_inputs] if args.key?(:training_task_inputs)
  @training_task_metadata = args[:training_task_metadata] if args.key?(:training_task_metadata)
  @update_time = args[:update_time] if args.key?(:update_time)
end