Class: Google::Apis::BigqueryV2::TrainingOptions
- Inherits:
-
Object
- Object
- Google::Apis::BigqueryV2::TrainingOptions
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/bigquery_v2/classes.rb,
lib/google/apis/bigquery_v2/representations.rb,
lib/google/apis/bigquery_v2/representations.rb
Overview
Options used in model training.
Instance Attribute Summary collapse
-
#adjust_step_changes ⇒ Boolean
(also: #adjust_step_changes?)
If true, detect step changes and make data adjustment in the input time series.
-
#auto_arima ⇒ Boolean
(also: #auto_arima?)
Whether to enable auto ARIMA or not.
-
#auto_arima_max_order ⇒ Fixnum
The max value of non-seasonal p and q.
-
#batch_size ⇒ Fixnum
Batch size for dnn models.
-
#booster_type ⇒ String
Booster type for boosted tree models.
-
#calculate_p_values ⇒ Boolean
(also: #calculate_p_values?)
Whether or not p-value test should be computed for this model.
-
#clean_spikes_and_dips ⇒ Boolean
(also: #clean_spikes_and_dips?)
If true, clean spikes and dips in the input time series.
-
#color_space ⇒ String
Enums for color space, used for processing images in Object Table.
-
#colsample_bylevel ⇒ Float
Subsample ratio of columns for each level for boosted tree models.
-
#colsample_bynode ⇒ Float
Subsample ratio of columns for each node(split) for boosted tree models.
-
#colsample_bytree ⇒ Float
Subsample ratio of columns when constructing each tree for boosted tree models.
-
#dart_normalize_type ⇒ String
Type of normalization algorithm for boosted tree models using dart booster.
-
#data_frequency ⇒ String
The data frequency of a time series.
-
#data_split_column ⇒ String
The column to split data with.
-
#data_split_eval_fraction ⇒ Float
The fraction of evaluation data over the whole input data.
-
#data_split_method ⇒ String
The data split type for training and evaluation, e.g.
-
#decompose_time_series ⇒ Boolean
(also: #decompose_time_series?)
If true, perform decompose time series and save the results.
-
#distance_type ⇒ String
Distance type for clustering models.
-
#dropout ⇒ Float
Dropout probability for dnn models.
-
#early_stop ⇒ Boolean
(also: #early_stop?)
Whether to stop early when the loss doesn't improve significantly any more ( compared to min_relative_progress).
-
#enable_global_explain ⇒ Boolean
(also: #enable_global_explain?)
If true, enable global explanation during training.
-
#feedback_type ⇒ String
Feedback type that specifies which algorithm to run for matrix factorization.
-
#hidden_units ⇒ Array<Fixnum>
Hidden units for dnn models.
-
#holiday_region ⇒ String
The geographical region based on which the holidays are considered in time series modeling.
-
#horizon ⇒ Fixnum
The number of periods ahead that need to be forecasted.
-
#hparam_tuning_objectives ⇒ Array<String>
The target evaluation metrics to optimize the hyperparameters for.
-
#include_drift ⇒ Boolean
(also: #include_drift?)
Include drift when fitting an ARIMA model.
-
#initial_learn_rate ⇒ Float
Specifies the initial learning rate for the line search learn rate strategy.
-
#input_label_columns ⇒ Array<String>
Name of input label columns in training data.
-
#integrated_gradients_num_steps ⇒ Fixnum
Number of integral steps for the integrated gradients explain method.
-
#item_column ⇒ String
Item column specified for matrix factorization models.
-
#kmeans_initialization_column ⇒ String
The column used to provide the initial centroids for kmeans algorithm when kmeans_initialization_method is CUSTOM.
-
#kmeans_initialization_method ⇒ String
The method used to initialize the centroids for kmeans algorithm.
-
#l1_regularization ⇒ Float
L1 regularization coefficient.
-
#l2_regularization ⇒ Float
L2 regularization coefficient.
-
#label_class_weights ⇒ Hash<String,Float>
Weights associated with each label class, for rebalancing the training data.
-
#learn_rate ⇒ Float
Learning rate in training.
-
#learn_rate_strategy ⇒ String
The strategy to determine learn rate for the current iteration.
-
#loss_type ⇒ String
Type of loss function used during training run.
-
#max_iterations ⇒ Fixnum
The maximum number of iterations in training.
-
#max_parallel_trials ⇒ Fixnum
Maximum number of trials to run in parallel.
-
#max_time_series_length ⇒ Fixnum
Get truncated length by last n points in time series.
-
#max_tree_depth ⇒ Fixnum
Maximum depth of a tree for boosted tree models.
-
#min_relative_progress ⇒ Float
When early_stop is true, stops training when accuracy improvement is less than 'min_relative_progress'.
-
#min_split_loss ⇒ Float
Minimum split loss for boosted tree models.
-
#min_time_series_length ⇒ Fixnum
Set fast trend ARIMA_PLUS model minimum training length.
-
#min_tree_child_weight ⇒ Fixnum
Minimum sum of instance weight needed in a child for boosted tree models.
-
#model_uri ⇒ String
Google Cloud Storage URI from which the model was imported.
-
#non_seasonal_order ⇒ Google::Apis::BigqueryV2::ArimaOrder
Arima order, can be used for both non-seasonal and seasonal parts.
-
#num_clusters ⇒ Fixnum
Number of clusters for clustering models.
-
#num_factors ⇒ Fixnum
Num factors specified for matrix factorization models.
-
#num_parallel_tree ⇒ Fixnum
Number of parallel trees constructed during each iteration for boosted tree models.
-
#num_trials ⇒ Fixnum
Number of trials to run this hyperparameter tuning job.
-
#optimization_strategy ⇒ String
Optimization strategy for training linear regression models.
-
#preserve_input_structs ⇒ Boolean
(also: #preserve_input_structs?)
Whether to preserve the input structs in output feature names.
-
#sampled_shapley_num_paths ⇒ Fixnum
Number of paths for the sampled Shapley explain method.
-
#subsample ⇒ Float
Subsample fraction of the training data to grow tree to prevent overfitting for boosted tree models.
-
#time_series_data_column ⇒ String
Column to be designated as time series data for ARIMA model.
-
#time_series_id_column ⇒ String
The time series id column that was used during ARIMA model training.
-
#time_series_id_columns ⇒ Array<String>
The time series id columns that were used during ARIMA model training.
-
#time_series_length_fraction ⇒ Float
Get truncated length by fraction in time series.
-
#time_series_timestamp_column ⇒ String
Column to be designated as time series timestamp for ARIMA model.
-
#tree_method ⇒ String
Tree construction algorithm for boosted tree models.
-
#trend_smoothing_window_size ⇒ Fixnum
The smoothing window size for the trend component of the time series.
-
#user_column ⇒ String
User column specified for matrix factorization models.
-
#wals_alpha ⇒ Float
Hyperparameter for matrix factoration when implicit feedback type is specified.
-
#warm_start ⇒ Boolean
(also: #warm_start?)
Whether to train a model from the last checkpoint.
Instance Method Summary collapse
-
#initialize(**args) ⇒ TrainingOptions
constructor
A new instance of TrainingOptions.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ TrainingOptions
Returns a new instance of TrainingOptions.
8614 8615 8616 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8614 def initialize(**args) update!(**args) end |
Instance Attribute Details
#adjust_step_changes ⇒ Boolean Also known as: adjust_step_changes?
If true, detect step changes and make data adjustment in the input time series.
Corresponds to the JSON property adjustStepChanges
8246 8247 8248 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8246 def adjust_step_changes @adjust_step_changes end |
#auto_arima ⇒ Boolean Also known as: auto_arima?
Whether to enable auto ARIMA or not.
Corresponds to the JSON property autoArima
8252 8253 8254 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8252 def auto_arima @auto_arima end |
#auto_arima_max_order ⇒ Fixnum
The max value of non-seasonal p and q.
Corresponds to the JSON property autoArimaMaxOrder
8258 8259 8260 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8258 def auto_arima_max_order @auto_arima_max_order end |
#batch_size ⇒ Fixnum
Batch size for dnn models.
Corresponds to the JSON property batchSize
8263 8264 8265 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8263 def batch_size @batch_size end |
#booster_type ⇒ String
Booster type for boosted tree models.
Corresponds to the JSON property boosterType
8268 8269 8270 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8268 def booster_type @booster_type end |
#calculate_p_values ⇒ Boolean Also known as: calculate_p_values?
Whether or not p-value test should be computed for this model. Only available
for linear and logistic regression models.
Corresponds to the JSON property calculatePValues
8274 8275 8276 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8274 def calculate_p_values @calculate_p_values end |
#clean_spikes_and_dips ⇒ Boolean Also known as: clean_spikes_and_dips?
If true, clean spikes and dips in the input time series.
Corresponds to the JSON property cleanSpikesAndDips
8280 8281 8282 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8280 def clean_spikes_and_dips @clean_spikes_and_dips end |
#color_space ⇒ String
Enums for color space, used for processing images in Object Table. See more
details at https://www.tensorflow.org/io/tutorials/colorspace.
Corresponds to the JSON property colorSpace
8287 8288 8289 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8287 def color_space @color_space end |
#colsample_bylevel ⇒ Float
Subsample ratio of columns for each level for boosted tree models.
Corresponds to the JSON property colsampleBylevel
8292 8293 8294 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8292 def colsample_bylevel @colsample_bylevel end |
#colsample_bynode ⇒ Float
Subsample ratio of columns for each node(split) for boosted tree models.
Corresponds to the JSON property colsampleBynode
8297 8298 8299 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8297 def colsample_bynode @colsample_bynode end |
#colsample_bytree ⇒ Float
Subsample ratio of columns when constructing each tree for boosted tree models.
Corresponds to the JSON property colsampleBytree
8302 8303 8304 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8302 def colsample_bytree @colsample_bytree end |
#dart_normalize_type ⇒ String
Type of normalization algorithm for boosted tree models using dart booster.
Corresponds to the JSON property dartNormalizeType
8307 8308 8309 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8307 def dart_normalize_type @dart_normalize_type end |
#data_frequency ⇒ String
The data frequency of a time series.
Corresponds to the JSON property dataFrequency
8312 8313 8314 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8312 def data_frequency @data_frequency end |
#data_split_column ⇒ String
The column to split data with. This column won't be used as a feature. 1. When
data_split_method is CUSTOM, the corresponding column should be boolean. The
rows with true value tag are eval data, and the false are training data. 2.
When data_split_method is SEQ, the first DATA_SPLIT_EVAL_FRACTION rows (from
smallest to largest) in the corresponding column are used as training data,
and the rest are eval data. It respects the order in Orderable data types:
https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#data-
type-properties
Corresponds to the JSON property dataSplitColumn
8324 8325 8326 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8324 def data_split_column @data_split_column end |
#data_split_eval_fraction ⇒ Float
The fraction of evaluation data over the whole input data. The rest of data
will be used as training data. The format should be double. Accurate to two
decimal places. Default value is 0.2.
Corresponds to the JSON property dataSplitEvalFraction
8331 8332 8333 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8331 def data_split_eval_fraction @data_split_eval_fraction end |
#data_split_method ⇒ String
The data split type for training and evaluation, e.g. RANDOM.
Corresponds to the JSON property dataSplitMethod
8336 8337 8338 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8336 def data_split_method @data_split_method end |
#decompose_time_series ⇒ Boolean Also known as: decompose_time_series?
If true, perform decompose time series and save the results.
Corresponds to the JSON property decomposeTimeSeries
8341 8342 8343 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8341 def decompose_time_series @decompose_time_series end |
#distance_type ⇒ String
Distance type for clustering models.
Corresponds to the JSON property distanceType
8347 8348 8349 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8347 def distance_type @distance_type end |
#dropout ⇒ Float
Dropout probability for dnn models.
Corresponds to the JSON property dropout
8352 8353 8354 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8352 def dropout @dropout end |
#early_stop ⇒ Boolean Also known as: early_stop?
Whether to stop early when the loss doesn't improve significantly any more (
compared to min_relative_progress). Used only for iterative training
algorithms.
Corresponds to the JSON property earlyStop
8359 8360 8361 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8359 def early_stop @early_stop end |
#enable_global_explain ⇒ Boolean Also known as: enable_global_explain?
If true, enable global explanation during training.
Corresponds to the JSON property enableGlobalExplain
8365 8366 8367 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8365 def enable_global_explain @enable_global_explain end |
#feedback_type ⇒ String
Feedback type that specifies which algorithm to run for matrix factorization.
Corresponds to the JSON property feedbackType
8371 8372 8373 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8371 def feedback_type @feedback_type end |
#hidden_units ⇒ Array<Fixnum>
Hidden units for dnn models.
Corresponds to the JSON property hiddenUnits
8376 8377 8378 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8376 def hidden_units @hidden_units end |
#holiday_region ⇒ String
The geographical region based on which the holidays are considered in time
series modeling. If a valid value is specified, then holiday effects modeling
is enabled.
Corresponds to the JSON property holidayRegion
8383 8384 8385 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8383 def holiday_region @holiday_region end |
#horizon ⇒ Fixnum
The number of periods ahead that need to be forecasted.
Corresponds to the JSON property horizon
8388 8389 8390 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8388 def horizon @horizon end |
#hparam_tuning_objectives ⇒ Array<String>
The target evaluation metrics to optimize the hyperparameters for.
Corresponds to the JSON property hparamTuningObjectives
8393 8394 8395 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8393 def hparam_tuning_objectives @hparam_tuning_objectives end |
#include_drift ⇒ Boolean Also known as: include_drift?
Include drift when fitting an ARIMA model.
Corresponds to the JSON property includeDrift
8398 8399 8400 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8398 def include_drift @include_drift end |
#initial_learn_rate ⇒ Float
Specifies the initial learning rate for the line search learn rate strategy.
Corresponds to the JSON property initialLearnRate
8404 8405 8406 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8404 def initial_learn_rate @initial_learn_rate end |
#input_label_columns ⇒ Array<String>
Name of input label columns in training data.
Corresponds to the JSON property inputLabelColumns
8409 8410 8411 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8409 def input_label_columns @input_label_columns end |
#integrated_gradients_num_steps ⇒ Fixnum
Number of integral steps for the integrated gradients explain method.
Corresponds to the JSON property integratedGradientsNumSteps
8414 8415 8416 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8414 def integrated_gradients_num_steps @integrated_gradients_num_steps end |
#item_column ⇒ String
Item column specified for matrix factorization models.
Corresponds to the JSON property itemColumn
8419 8420 8421 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8419 def item_column @item_column end |
#kmeans_initialization_column ⇒ String
The column used to provide the initial centroids for kmeans algorithm when
kmeans_initialization_method is CUSTOM.
Corresponds to the JSON property kmeansInitializationColumn
8425 8426 8427 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8425 def kmeans_initialization_column @kmeans_initialization_column end |
#kmeans_initialization_method ⇒ String
The method used to initialize the centroids for kmeans algorithm.
Corresponds to the JSON property kmeansInitializationMethod
8430 8431 8432 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8430 def kmeans_initialization_method @kmeans_initialization_method end |
#l1_regularization ⇒ Float
L1 regularization coefficient.
Corresponds to the JSON property l1Regularization
8435 8436 8437 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8435 def l1_regularization @l1_regularization end |
#l2_regularization ⇒ Float
L2 regularization coefficient.
Corresponds to the JSON property l2Regularization
8440 8441 8442 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8440 def l2_regularization @l2_regularization end |
#label_class_weights ⇒ Hash<String,Float>
Weights associated with each label class, for rebalancing the training data.
Only applicable for classification models.
Corresponds to the JSON property labelClassWeights
8446 8447 8448 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8446 def label_class_weights @label_class_weights end |
#learn_rate ⇒ Float
Learning rate in training. Used only for iterative training algorithms.
Corresponds to the JSON property learnRate
8451 8452 8453 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8451 def learn_rate @learn_rate end |
#learn_rate_strategy ⇒ String
The strategy to determine learn rate for the current iteration.
Corresponds to the JSON property learnRateStrategy
8456 8457 8458 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8456 def learn_rate_strategy @learn_rate_strategy end |
#loss_type ⇒ String
Type of loss function used during training run.
Corresponds to the JSON property lossType
8461 8462 8463 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8461 def loss_type @loss_type end |
#max_iterations ⇒ Fixnum
The maximum number of iterations in training. Used only for iterative training
algorithms.
Corresponds to the JSON property maxIterations
8467 8468 8469 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8467 def max_iterations @max_iterations end |
#max_parallel_trials ⇒ Fixnum
Maximum number of trials to run in parallel.
Corresponds to the JSON property maxParallelTrials
8472 8473 8474 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8472 def max_parallel_trials @max_parallel_trials end |
#max_time_series_length ⇒ Fixnum
Get truncated length by last n points in time series. Use separately from
time_series_length_fraction and min_time_series_length.
Corresponds to the JSON property maxTimeSeriesLength
8478 8479 8480 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8478 def max_time_series_length @max_time_series_length end |
#max_tree_depth ⇒ Fixnum
Maximum depth of a tree for boosted tree models.
Corresponds to the JSON property maxTreeDepth
8483 8484 8485 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8483 def max_tree_depth @max_tree_depth end |
#min_relative_progress ⇒ Float
When early_stop is true, stops training when accuracy improvement is less than
'min_relative_progress'. Used only for iterative training algorithms.
Corresponds to the JSON property minRelativeProgress
8489 8490 8491 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8489 def min_relative_progress @min_relative_progress end |
#min_split_loss ⇒ Float
Minimum split loss for boosted tree models.
Corresponds to the JSON property minSplitLoss
8494 8495 8496 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8494 def min_split_loss @min_split_loss end |
#min_time_series_length ⇒ Fixnum
Set fast trend ARIMA_PLUS model minimum training length. Use in pair with
time_series_length_fraction.
Corresponds to the JSON property minTimeSeriesLength
8500 8501 8502 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8500 def min_time_series_length @min_time_series_length end |
#min_tree_child_weight ⇒ Fixnum
Minimum sum of instance weight needed in a child for boosted tree models.
Corresponds to the JSON property minTreeChildWeight
8505 8506 8507 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8505 def min_tree_child_weight @min_tree_child_weight end |
#model_uri ⇒ String
Google Cloud Storage URI from which the model was imported. Only applicable
for imported models.
Corresponds to the JSON property modelUri
8511 8512 8513 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8511 def model_uri @model_uri end |
#non_seasonal_order ⇒ Google::Apis::BigqueryV2::ArimaOrder
Arima order, can be used for both non-seasonal and seasonal parts.
Corresponds to the JSON property nonSeasonalOrder
8516 8517 8518 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8516 def non_seasonal_order @non_seasonal_order end |
#num_clusters ⇒ Fixnum
Number of clusters for clustering models.
Corresponds to the JSON property numClusters
8521 8522 8523 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8521 def num_clusters @num_clusters end |
#num_factors ⇒ Fixnum
Num factors specified for matrix factorization models.
Corresponds to the JSON property numFactors
8526 8527 8528 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8526 def num_factors @num_factors end |
#num_parallel_tree ⇒ Fixnum
Number of parallel trees constructed during each iteration for boosted tree
models.
Corresponds to the JSON property numParallelTree
8532 8533 8534 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8532 def num_parallel_tree @num_parallel_tree end |
#num_trials ⇒ Fixnum
Number of trials to run this hyperparameter tuning job.
Corresponds to the JSON property numTrials
8537 8538 8539 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8537 def num_trials @num_trials end |
#optimization_strategy ⇒ String
Optimization strategy for training linear regression models.
Corresponds to the JSON property optimizationStrategy
8542 8543 8544 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8542 def optimization_strategy @optimization_strategy end |
#preserve_input_structs ⇒ Boolean Also known as: preserve_input_structs?
Whether to preserve the input structs in output feature names. Suppose there
is a struct A with field b. When false (default), the output feature name is
A_b. When true, the output feature name is A.b.
Corresponds to the JSON property preserveInputStructs
8549 8550 8551 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8549 def preserve_input_structs @preserve_input_structs end |
#sampled_shapley_num_paths ⇒ Fixnum
Number of paths for the sampled Shapley explain method.
Corresponds to the JSON property sampledShapleyNumPaths
8555 8556 8557 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8555 def sampled_shapley_num_paths @sampled_shapley_num_paths end |
#subsample ⇒ Float
Subsample fraction of the training data to grow tree to prevent overfitting
for boosted tree models.
Corresponds to the JSON property subsample
8561 8562 8563 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8561 def subsample @subsample end |
#time_series_data_column ⇒ String
Column to be designated as time series data for ARIMA model.
Corresponds to the JSON property timeSeriesDataColumn
8566 8567 8568 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8566 def time_series_data_column @time_series_data_column end |
#time_series_id_column ⇒ String
The time series id column that was used during ARIMA model training.
Corresponds to the JSON property timeSeriesIdColumn
8571 8572 8573 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8571 def time_series_id_column @time_series_id_column end |
#time_series_id_columns ⇒ Array<String>
The time series id columns that were used during ARIMA model training.
Corresponds to the JSON property timeSeriesIdColumns
8576 8577 8578 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8576 def time_series_id_columns @time_series_id_columns end |
#time_series_length_fraction ⇒ Float
Get truncated length by fraction in time series.
Corresponds to the JSON property timeSeriesLengthFraction
8581 8582 8583 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8581 def time_series_length_fraction @time_series_length_fraction end |
#time_series_timestamp_column ⇒ String
Column to be designated as time series timestamp for ARIMA model.
Corresponds to the JSON property timeSeriesTimestampColumn
8586 8587 8588 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8586 def @time_series_timestamp_column end |
#tree_method ⇒ String
Tree construction algorithm for boosted tree models.
Corresponds to the JSON property treeMethod
8591 8592 8593 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8591 def tree_method @tree_method end |
#trend_smoothing_window_size ⇒ Fixnum
The smoothing window size for the trend component of the time series.
Corresponds to the JSON property trendSmoothingWindowSize
8596 8597 8598 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8596 def trend_smoothing_window_size @trend_smoothing_window_size end |
#user_column ⇒ String
User column specified for matrix factorization models.
Corresponds to the JSON property userColumn
8601 8602 8603 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8601 def user_column @user_column end |
#wals_alpha ⇒ Float
Hyperparameter for matrix factoration when implicit feedback type is specified.
Corresponds to the JSON property walsAlpha
8606 8607 8608 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8606 def wals_alpha @wals_alpha end |
#warm_start ⇒ Boolean Also known as: warm_start?
Whether to train a model from the last checkpoint.
Corresponds to the JSON property warmStart
8611 8612 8613 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8611 def warm_start @warm_start end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 8619 def update!(**args) @adjust_step_changes = args[:adjust_step_changes] if args.key?(:adjust_step_changes) @auto_arima = args[:auto_arima] if args.key?(:auto_arima) @auto_arima_max_order = args[:auto_arima_max_order] if args.key?(:auto_arima_max_order) @batch_size = args[:batch_size] if args.key?(:batch_size) @booster_type = args[:booster_type] if args.key?(:booster_type) @calculate_p_values = args[:calculate_p_values] if args.key?(:calculate_p_values) @clean_spikes_and_dips = args[:clean_spikes_and_dips] if args.key?(:clean_spikes_and_dips) @color_space = args[:color_space] if args.key?(:color_space) @colsample_bylevel = args[:colsample_bylevel] if args.key?(:colsample_bylevel) @colsample_bynode = args[:colsample_bynode] if args.key?(:colsample_bynode) @colsample_bytree = args[:colsample_bytree] if args.key?(:colsample_bytree) @dart_normalize_type = args[:dart_normalize_type] if args.key?(:dart_normalize_type) @data_frequency = args[:data_frequency] if args.key?(:data_frequency) @data_split_column = args[:data_split_column] if args.key?(:data_split_column) @data_split_eval_fraction = args[:data_split_eval_fraction] if args.key?(:data_split_eval_fraction) @data_split_method = args[:data_split_method] if args.key?(:data_split_method) @decompose_time_series = args[:decompose_time_series] if args.key?(:decompose_time_series) @distance_type = args[:distance_type] if args.key?(:distance_type) @dropout = args[:dropout] if args.key?(:dropout) @early_stop = args[:early_stop] if args.key?(:early_stop) @enable_global_explain = args[:enable_global_explain] if args.key?(:enable_global_explain) @feedback_type = args[:feedback_type] if args.key?(:feedback_type) @hidden_units = args[:hidden_units] if args.key?(:hidden_units) @holiday_region = args[:holiday_region] if args.key?(:holiday_region) @horizon = args[:horizon] if args.key?(:horizon) @hparam_tuning_objectives = args[:hparam_tuning_objectives] if args.key?(:hparam_tuning_objectives) @include_drift = args[:include_drift] if args.key?(:include_drift) @initial_learn_rate = args[:initial_learn_rate] if args.key?(:initial_learn_rate) @input_label_columns = args[:input_label_columns] if args.key?(:input_label_columns) @integrated_gradients_num_steps = args[:integrated_gradients_num_steps] if args.key?(:integrated_gradients_num_steps) @item_column = args[:item_column] if args.key?(:item_column) @kmeans_initialization_column = args[:kmeans_initialization_column] if args.key?(:kmeans_initialization_column) @kmeans_initialization_method = args[:kmeans_initialization_method] if args.key?(:kmeans_initialization_method) @l1_regularization = args[:l1_regularization] if args.key?(:l1_regularization) @l2_regularization = args[:l2_regularization] if args.key?(:l2_regularization) @label_class_weights = args[:label_class_weights] if args.key?(:label_class_weights) @learn_rate = args[:learn_rate] if args.key?(:learn_rate) @learn_rate_strategy = args[:learn_rate_strategy] if args.key?(:learn_rate_strategy) @loss_type = args[:loss_type] if args.key?(:loss_type) @max_iterations = args[:max_iterations] if args.key?(:max_iterations) @max_parallel_trials = args[:max_parallel_trials] if args.key?(:max_parallel_trials) @max_time_series_length = args[:max_time_series_length] if args.key?(:max_time_series_length) @max_tree_depth = args[:max_tree_depth] if args.key?(:max_tree_depth) @min_relative_progress = args[:min_relative_progress] if args.key?(:min_relative_progress) @min_split_loss = args[:min_split_loss] if args.key?(:min_split_loss) @min_time_series_length = args[:min_time_series_length] if args.key?(:min_time_series_length) @min_tree_child_weight = args[:min_tree_child_weight] if args.key?(:min_tree_child_weight) @model_uri = args[:model_uri] if args.key?(:model_uri) @non_seasonal_order = args[:non_seasonal_order] if args.key?(:non_seasonal_order) @num_clusters = args[:num_clusters] if args.key?(:num_clusters) @num_factors = args[:num_factors] if args.key?(:num_factors) @num_parallel_tree = args[:num_parallel_tree] if args.key?(:num_parallel_tree) @num_trials = args[:num_trials] if args.key?(:num_trials) @optimization_strategy = args[:optimization_strategy] if args.key?(:optimization_strategy) @preserve_input_structs = args[:preserve_input_structs] if args.key?(:preserve_input_structs) @sampled_shapley_num_paths = args[:sampled_shapley_num_paths] if args.key?(:sampled_shapley_num_paths) @subsample = args[:subsample] if args.key?(:subsample) @time_series_data_column = args[:time_series_data_column] if args.key?(:time_series_data_column) @time_series_id_column = args[:time_series_id_column] if args.key?(:time_series_id_column) @time_series_id_columns = args[:time_series_id_columns] if args.key?(:time_series_id_columns) @time_series_length_fraction = args[:time_series_length_fraction] if args.key?(:time_series_length_fraction) @time_series_timestamp_column = args[:time_series_timestamp_column] if args.key?(:time_series_timestamp_column) @tree_method = args[:tree_method] if args.key?(:tree_method) @trend_smoothing_window_size = args[:trend_smoothing_window_size] if args.key?(:trend_smoothing_window_size) @user_column = args[:user_column] if args.key?(:user_column) @wals_alpha = args[:wals_alpha] if args.key?(:wals_alpha) @warm_start = args[:warm_start] if args.key?(:warm_start) end |