Class: Google::Apis::BigqueryV2::TrainingOptions
- Inherits:
-
Object
- Object
- Google::Apis::BigqueryV2::TrainingOptions
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/bigquery_v2/classes.rb,
lib/google/apis/bigquery_v2/representations.rb,
lib/google/apis/bigquery_v2/representations.rb
Overview
Options used in model training.
Instance Attribute Summary collapse
-
#activation_fn ⇒ String
Activation function of the neural nets.
-
#adjust_step_changes ⇒ Boolean
(also: #adjust_step_changes?)
If true, detect step changes and make data adjustment in the input time series.
-
#approx_global_feature_contrib ⇒ Boolean
(also: #approx_global_feature_contrib?)
Whether to use approximate feature contribution method in XGBoost model explanation for global explain.
-
#auto_arima ⇒ Boolean
(also: #auto_arima?)
Whether to enable auto ARIMA or not.
-
#auto_arima_max_order ⇒ Fixnum
The max value of the sum of non-seasonal p and q.
-
#auto_arima_min_order ⇒ Fixnum
The min value of the sum of non-seasonal p and q.
-
#auto_class_weights ⇒ Boolean
(also: #auto_class_weights?)
Whether to calculate class weights automatically based on the popularity of each label.
-
#batch_size ⇒ Fixnum
Batch size for dnn models.
-
#booster_type ⇒ String
Booster type for boosted tree models.
-
#budget_hours ⇒ Float
Budget in hours for AutoML training.
-
#calculate_p_values ⇒ Boolean
(also: #calculate_p_values?)
Whether or not p-value test should be computed for this model.
-
#category_encoding_method ⇒ String
Categorical feature encoding method.
-
#clean_spikes_and_dips ⇒ Boolean
(also: #clean_spikes_and_dips?)
If true, clean spikes and dips in the input time series.
-
#color_space ⇒ String
Enums for color space, used for processing images in Object Table.
-
#colsample_bylevel ⇒ Float
Subsample ratio of columns for each level for boosted tree models.
-
#colsample_bynode ⇒ Float
Subsample ratio of columns for each node(split) for boosted tree models.
-
#colsample_bytree ⇒ Float
Subsample ratio of columns when constructing each tree for boosted tree models.
-
#contribution_metric ⇒ String
The contribution metric.
-
#dart_normalize_type ⇒ String
Type of normalization algorithm for boosted tree models using dart booster.
-
#data_frequency ⇒ String
The data frequency of a time series.
-
#data_split_column ⇒ String
The column to split data with.
-
#data_split_eval_fraction ⇒ Float
The fraction of evaluation data over the whole input data.
-
#data_split_method ⇒ String
The data split type for training and evaluation, e.g.
-
#decompose_time_series ⇒ Boolean
(also: #decompose_time_series?)
If true, perform decompose time series and save the results.
-
#dimension_id_columns ⇒ Array<String>
Optional.
-
#distance_type ⇒ String
Distance type for clustering models.
-
#dropout ⇒ Float
Dropout probability for dnn models.
-
#early_stop ⇒ Boolean
(also: #early_stop?)
Whether to stop early when the loss doesn't improve significantly any more ( compared to min_relative_progress).
-
#enable_global_explain ⇒ Boolean
(also: #enable_global_explain?)
If true, enable global explanation during training.
-
#feedback_type ⇒ String
Feedback type that specifies which algorithm to run for matrix factorization.
-
#fit_intercept ⇒ Boolean
(also: #fit_intercept?)
Whether the model should include intercept during model training.
-
#hidden_units ⇒ Array<Fixnum>
Hidden units for dnn models.
-
#holiday_region ⇒ String
The geographical region based on which the holidays are considered in time series modeling.
-
#holiday_regions ⇒ Array<String>
A list of geographical regions that are used for time series modeling.
-
#horizon ⇒ Fixnum
The number of periods ahead that need to be forecasted.
-
#hparam_tuning_objectives ⇒ Array<String>
The target evaluation metrics to optimize the hyperparameters for.
-
#include_drift ⇒ Boolean
(also: #include_drift?)
Include drift when fitting an ARIMA model.
-
#initial_learn_rate ⇒ Float
Specifies the initial learning rate for the line search learn rate strategy.
-
#input_label_columns ⇒ Array<String>
Name of input label columns in training data.
-
#instance_weight_column ⇒ String
Name of the instance weight column for training data.
-
#integrated_gradients_num_steps ⇒ Fixnum
Number of integral steps for the integrated gradients explain method.
-
#is_test_column ⇒ String
Name of the column used to determine the rows corresponding to control and test.
-
#item_column ⇒ String
Item column specified for matrix factorization models.
-
#kmeans_initialization_column ⇒ String
The column used to provide the initial centroids for kmeans algorithm when kmeans_initialization_method is CUSTOM.
-
#kmeans_initialization_method ⇒ String
The method used to initialize the centroids for kmeans algorithm.
-
#l1_reg_activation ⇒ Float
L1 regularization coefficient to activations.
-
#l1_regularization ⇒ Float
L1 regularization coefficient.
-
#l2_regularization ⇒ Float
L2 regularization coefficient.
-
#label_class_weights ⇒ Hash<String,Float>
Weights associated with each label class, for rebalancing the training data.
-
#learn_rate ⇒ Float
Learning rate in training.
-
#learn_rate_strategy ⇒ String
The strategy to determine learn rate for the current iteration.
-
#loss_type ⇒ String
Type of loss function used during training run.
-
#max_iterations ⇒ Fixnum
The maximum number of iterations in training.
-
#max_parallel_trials ⇒ Fixnum
Maximum number of trials to run in parallel.
-
#max_time_series_length ⇒ Fixnum
The maximum number of time points in a time series that can be used in modeling the trend component of the time series.
-
#max_tree_depth ⇒ Fixnum
Maximum depth of a tree for boosted tree models.
-
#min_apriori_support ⇒ Float
The apriori support minimum.
-
#min_relative_progress ⇒ Float
When early_stop is true, stops training when accuracy improvement is less than 'min_relative_progress'.
-
#min_split_loss ⇒ Float
Minimum split loss for boosted tree models.
-
#min_time_series_length ⇒ Fixnum
The minimum number of time points in a time series that are used in modeling the trend component of the time series.
-
#min_tree_child_weight ⇒ Fixnum
Minimum sum of instance weight needed in a child for boosted tree models.
-
#model_registry ⇒ String
The model registry.
-
#model_uri ⇒ String
Google Cloud Storage URI from which the model was imported.
-
#non_seasonal_order ⇒ Google::Apis::BigqueryV2::ArimaOrder
Arima order, can be used for both non-seasonal and seasonal parts.
-
#num_clusters ⇒ Fixnum
Number of clusters for clustering models.
-
#num_factors ⇒ Fixnum
Num factors specified for matrix factorization models.
-
#num_parallel_tree ⇒ Fixnum
Number of parallel trees constructed during each iteration for boosted tree models.
-
#num_principal_components ⇒ Fixnum
Number of principal components to keep in the PCA model.
-
#num_trials ⇒ Fixnum
Number of trials to run this hyperparameter tuning job.
-
#optimization_strategy ⇒ String
Optimization strategy for training linear regression models.
-
#optimizer ⇒ String
Optimizer used for training the neural nets.
-
#pca_explained_variance_ratio ⇒ Float
The minimum ratio of cumulative explained variance that needs to be given by the PCA model.
-
#pca_solver ⇒ String
The solver for PCA.
-
#sampled_shapley_num_paths ⇒ Fixnum
Number of paths for the sampled Shapley explain method.
-
#scale_features ⇒ Boolean
(also: #scale_features?)
If true, scale the feature values by dividing the feature standard deviation.
-
#standardize_features ⇒ Boolean
(also: #standardize_features?)
Whether to standardize numerical features.
-
#subsample ⇒ Float
Subsample fraction of the training data to grow tree to prevent overfitting for boosted tree models.
-
#tf_version ⇒ String
Based on the selected TF version, the corresponding docker image is used to train external models.
-
#time_series_data_column ⇒ String
Column to be designated as time series data for ARIMA model.
-
#time_series_id_column ⇒ String
The time series id column that was used during ARIMA model training.
-
#time_series_id_columns ⇒ Array<String>
The time series id columns that were used during ARIMA model training.
-
#time_series_length_fraction ⇒ Float
The fraction of the interpolated length of the time series that's used to model the time series trend component.
-
#time_series_timestamp_column ⇒ String
Column to be designated as time series timestamp for ARIMA model.
-
#tree_method ⇒ String
Tree construction algorithm for boosted tree models.
-
#trend_smoothing_window_size ⇒ Fixnum
Smoothing window size for the trend component.
-
#user_column ⇒ String
User column specified for matrix factorization models.
-
#vertex_ai_model_version_aliases ⇒ Array<String>
The version aliases to apply in Vertex AI model registry.
-
#wals_alpha ⇒ Float
Hyperparameter for matrix factoration when implicit feedback type is specified.
-
#warm_start ⇒ Boolean
(also: #warm_start?)
Whether to train a model from the last checkpoint.
-
#xgboost_version ⇒ String
User-selected XGBoost versions for training of XGBoost models.
Instance Method Summary collapse
-
#initialize(**args) ⇒ TrainingOptions
constructor
A new instance of TrainingOptions.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ TrainingOptions
Returns a new instance of TrainingOptions.
11156 11157 11158 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11156 def initialize(**args) update!(**args) end |
Instance Attribute Details
#activation_fn ⇒ String
Activation function of the neural nets.
Corresponds to the JSON property activationFn
10642 10643 10644 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10642 def activation_fn @activation_fn end |
#adjust_step_changes ⇒ Boolean Also known as: adjust_step_changes?
If true, detect step changes and make data adjustment in the input time series.
Corresponds to the JSON property adjustStepChanges
10647 10648 10649 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10647 def adjust_step_changes @adjust_step_changes end |
#approx_global_feature_contrib ⇒ Boolean Also known as: approx_global_feature_contrib?
Whether to use approximate feature contribution method in XGBoost model
explanation for global explain.
Corresponds to the JSON property approxGlobalFeatureContrib
10654 10655 10656 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10654 def approx_global_feature_contrib @approx_global_feature_contrib end |
#auto_arima ⇒ Boolean Also known as: auto_arima?
Whether to enable auto ARIMA or not.
Corresponds to the JSON property autoArima
10660 10661 10662 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10660 def auto_arima @auto_arima end |
#auto_arima_max_order ⇒ Fixnum
The max value of the sum of non-seasonal p and q.
Corresponds to the JSON property autoArimaMaxOrder
10666 10667 10668 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10666 def auto_arima_max_order @auto_arima_max_order end |
#auto_arima_min_order ⇒ Fixnum
The min value of the sum of non-seasonal p and q.
Corresponds to the JSON property autoArimaMinOrder
10671 10672 10673 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10671 def auto_arima_min_order @auto_arima_min_order end |
#auto_class_weights ⇒ Boolean Also known as: auto_class_weights?
Whether to calculate class weights automatically based on the popularity of
each label.
Corresponds to the JSON property autoClassWeights
10677 10678 10679 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10677 def auto_class_weights @auto_class_weights end |
#batch_size ⇒ Fixnum
Batch size for dnn models.
Corresponds to the JSON property batchSize
10683 10684 10685 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10683 def batch_size @batch_size end |
#booster_type ⇒ String
Booster type for boosted tree models.
Corresponds to the JSON property boosterType
10688 10689 10690 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10688 def booster_type @booster_type end |
#budget_hours ⇒ Float
Budget in hours for AutoML training.
Corresponds to the JSON property budgetHours
10693 10694 10695 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10693 def budget_hours @budget_hours end |
#calculate_p_values ⇒ Boolean Also known as: calculate_p_values?
Whether or not p-value test should be computed for this model. Only available
for linear and logistic regression models.
Corresponds to the JSON property calculatePValues
10699 10700 10701 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10699 def calculate_p_values @calculate_p_values end |
#category_encoding_method ⇒ String
Categorical feature encoding method.
Corresponds to the JSON property categoryEncodingMethod
10705 10706 10707 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10705 def category_encoding_method @category_encoding_method end |
#clean_spikes_and_dips ⇒ Boolean Also known as: clean_spikes_and_dips?
If true, clean spikes and dips in the input time series.
Corresponds to the JSON property cleanSpikesAndDips
10710 10711 10712 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10710 def clean_spikes_and_dips @clean_spikes_and_dips end |
#color_space ⇒ String
Enums for color space, used for processing images in Object Table. See more
details at https://www.tensorflow.org/io/tutorials/colorspace.
Corresponds to the JSON property colorSpace
10717 10718 10719 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10717 def color_space @color_space end |
#colsample_bylevel ⇒ Float
Subsample ratio of columns for each level for boosted tree models.
Corresponds to the JSON property colsampleBylevel
10722 10723 10724 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10722 def colsample_bylevel @colsample_bylevel end |
#colsample_bynode ⇒ Float
Subsample ratio of columns for each node(split) for boosted tree models.
Corresponds to the JSON property colsampleBynode
10727 10728 10729 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10727 def colsample_bynode @colsample_bynode end |
#colsample_bytree ⇒ Float
Subsample ratio of columns when constructing each tree for boosted tree models.
Corresponds to the JSON property colsampleBytree
10732 10733 10734 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10732 def colsample_bytree @colsample_bytree end |
#contribution_metric ⇒ String
The contribution metric. Applies to contribution analysis models. Allowed
formats supported are for summable and summable ratio contribution metrics.
These include expressions such as SUM(x)
or SUM(x)/SUM(y)
, where x and y
are column names from the base table.
Corresponds to the JSON property contributionMetric
10740 10741 10742 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10740 def contribution_metric @contribution_metric end |
#dart_normalize_type ⇒ String
Type of normalization algorithm for boosted tree models using dart booster.
Corresponds to the JSON property dartNormalizeType
10745 10746 10747 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10745 def dart_normalize_type @dart_normalize_type end |
#data_frequency ⇒ String
The data frequency of a time series.
Corresponds to the JSON property dataFrequency
10750 10751 10752 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10750 def data_frequency @data_frequency end |
#data_split_column ⇒ String
The column to split data with. This column won't be used as a feature. 1. When
data_split_method is CUSTOM, the corresponding column should be boolean. The
rows with true value tag are eval data, and the false are training data. 2.
When data_split_method is SEQ, the first DATA_SPLIT_EVAL_FRACTION rows (from
smallest to largest) in the corresponding column are used as training data,
and the rest are eval data. It respects the order in Orderable data types:
https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#
data_type_properties
Corresponds to the JSON property dataSplitColumn
10762 10763 10764 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10762 def data_split_column @data_split_column end |
#data_split_eval_fraction ⇒ Float
The fraction of evaluation data over the whole input data. The rest of data
will be used as training data. The format should be double. Accurate to two
decimal places. Default value is 0.2.
Corresponds to the JSON property dataSplitEvalFraction
10769 10770 10771 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10769 def data_split_eval_fraction @data_split_eval_fraction end |
#data_split_method ⇒ String
The data split type for training and evaluation, e.g. RANDOM.
Corresponds to the JSON property dataSplitMethod
10774 10775 10776 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10774 def data_split_method @data_split_method end |
#decompose_time_series ⇒ Boolean Also known as: decompose_time_series?
If true, perform decompose time series and save the results.
Corresponds to the JSON property decomposeTimeSeries
10779 10780 10781 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10779 def decompose_time_series @decompose_time_series end |
#dimension_id_columns ⇒ Array<String>
Optional. Names of the columns to slice on. Applies to contribution analysis
models.
Corresponds to the JSON property dimensionIdColumns
10786 10787 10788 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10786 def dimension_id_columns @dimension_id_columns end |
#distance_type ⇒ String
Distance type for clustering models.
Corresponds to the JSON property distanceType
10791 10792 10793 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10791 def distance_type @distance_type end |
#dropout ⇒ Float
Dropout probability for dnn models.
Corresponds to the JSON property dropout
10796 10797 10798 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10796 def dropout @dropout end |
#early_stop ⇒ Boolean Also known as: early_stop?
Whether to stop early when the loss doesn't improve significantly any more (
compared to min_relative_progress). Used only for iterative training
algorithms.
Corresponds to the JSON property earlyStop
10803 10804 10805 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10803 def early_stop @early_stop end |
#enable_global_explain ⇒ Boolean Also known as: enable_global_explain?
If true, enable global explanation during training.
Corresponds to the JSON property enableGlobalExplain
10809 10810 10811 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10809 def enable_global_explain @enable_global_explain end |
#feedback_type ⇒ String
Feedback type that specifies which algorithm to run for matrix factorization.
Corresponds to the JSON property feedbackType
10815 10816 10817 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10815 def feedback_type @feedback_type end |
#fit_intercept ⇒ Boolean Also known as: fit_intercept?
Whether the model should include intercept during model training.
Corresponds to the JSON property fitIntercept
10820 10821 10822 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10820 def fit_intercept @fit_intercept end |
#hidden_units ⇒ Array<Fixnum>
Hidden units for dnn models.
Corresponds to the JSON property hiddenUnits
10826 10827 10828 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10826 def hidden_units @hidden_units end |
#holiday_region ⇒ String
The geographical region based on which the holidays are considered in time
series modeling. If a valid value is specified, then holiday effects modeling
is enabled.
Corresponds to the JSON property holidayRegion
10833 10834 10835 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10833 def holiday_region @holiday_region end |
#holiday_regions ⇒ Array<String>
A list of geographical regions that are used for time series modeling.
Corresponds to the JSON property holidayRegions
10838 10839 10840 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10838 def holiday_regions @holiday_regions end |
#horizon ⇒ Fixnum
The number of periods ahead that need to be forecasted.
Corresponds to the JSON property horizon
10843 10844 10845 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10843 def horizon @horizon end |
#hparam_tuning_objectives ⇒ Array<String>
The target evaluation metrics to optimize the hyperparameters for.
Corresponds to the JSON property hparamTuningObjectives
10848 10849 10850 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10848 def hparam_tuning_objectives @hparam_tuning_objectives end |
#include_drift ⇒ Boolean Also known as: include_drift?
Include drift when fitting an ARIMA model.
Corresponds to the JSON property includeDrift
10853 10854 10855 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10853 def include_drift @include_drift end |
#initial_learn_rate ⇒ Float
Specifies the initial learning rate for the line search learn rate strategy.
Corresponds to the JSON property initialLearnRate
10859 10860 10861 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10859 def initial_learn_rate @initial_learn_rate end |
#input_label_columns ⇒ Array<String>
Name of input label columns in training data.
Corresponds to the JSON property inputLabelColumns
10864 10865 10866 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10864 def input_label_columns @input_label_columns end |
#instance_weight_column ⇒ String
Name of the instance weight column for training data. This column isn't be
used as a feature.
Corresponds to the JSON property instanceWeightColumn
10870 10871 10872 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10870 def instance_weight_column @instance_weight_column end |
#integrated_gradients_num_steps ⇒ Fixnum
Number of integral steps for the integrated gradients explain method.
Corresponds to the JSON property integratedGradientsNumSteps
10875 10876 10877 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10875 def integrated_gradients_num_steps @integrated_gradients_num_steps end |
#is_test_column ⇒ String
Name of the column used to determine the rows corresponding to control and
test. Applies to contribution analysis models.
Corresponds to the JSON property isTestColumn
10881 10882 10883 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10881 def is_test_column @is_test_column end |
#item_column ⇒ String
Item column specified for matrix factorization models.
Corresponds to the JSON property itemColumn
10886 10887 10888 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10886 def item_column @item_column end |
#kmeans_initialization_column ⇒ String
The column used to provide the initial centroids for kmeans algorithm when
kmeans_initialization_method is CUSTOM.
Corresponds to the JSON property kmeansInitializationColumn
10892 10893 10894 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10892 def kmeans_initialization_column @kmeans_initialization_column end |
#kmeans_initialization_method ⇒ String
The method used to initialize the centroids for kmeans algorithm.
Corresponds to the JSON property kmeansInitializationMethod
10897 10898 10899 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10897 def kmeans_initialization_method @kmeans_initialization_method end |
#l1_reg_activation ⇒ Float
L1 regularization coefficient to activations.
Corresponds to the JSON property l1RegActivation
10902 10903 10904 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10902 def l1_reg_activation @l1_reg_activation end |
#l1_regularization ⇒ Float
L1 regularization coefficient.
Corresponds to the JSON property l1Regularization
10907 10908 10909 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10907 def l1_regularization @l1_regularization end |
#l2_regularization ⇒ Float
L2 regularization coefficient.
Corresponds to the JSON property l2Regularization
10912 10913 10914 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10912 def l2_regularization @l2_regularization end |
#label_class_weights ⇒ Hash<String,Float>
Weights associated with each label class, for rebalancing the training data.
Only applicable for classification models.
Corresponds to the JSON property labelClassWeights
10918 10919 10920 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10918 def label_class_weights @label_class_weights end |
#learn_rate ⇒ Float
Learning rate in training. Used only for iterative training algorithms.
Corresponds to the JSON property learnRate
10923 10924 10925 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10923 def learn_rate @learn_rate end |
#learn_rate_strategy ⇒ String
The strategy to determine learn rate for the current iteration.
Corresponds to the JSON property learnRateStrategy
10928 10929 10930 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10928 def learn_rate_strategy @learn_rate_strategy end |
#loss_type ⇒ String
Type of loss function used during training run.
Corresponds to the JSON property lossType
10933 10934 10935 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10933 def loss_type @loss_type end |
#max_iterations ⇒ Fixnum
The maximum number of iterations in training. Used only for iterative training
algorithms.
Corresponds to the JSON property maxIterations
10939 10940 10941 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10939 def max_iterations @max_iterations end |
#max_parallel_trials ⇒ Fixnum
Maximum number of trials to run in parallel.
Corresponds to the JSON property maxParallelTrials
10944 10945 10946 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10944 def max_parallel_trials @max_parallel_trials end |
#max_time_series_length ⇒ Fixnum
The maximum number of time points in a time series that can be used in
modeling the trend component of the time series. Don't use this option with
the timeSeriesLengthFraction
or minTimeSeriesLength
options.
Corresponds to the JSON property maxTimeSeriesLength
10951 10952 10953 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10951 def max_time_series_length @max_time_series_length end |
#max_tree_depth ⇒ Fixnum
Maximum depth of a tree for boosted tree models.
Corresponds to the JSON property maxTreeDepth
10956 10957 10958 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10956 def max_tree_depth @max_tree_depth end |
#min_apriori_support ⇒ Float
The apriori support minimum. Applies to contribution analysis models.
Corresponds to the JSON property minAprioriSupport
10961 10962 10963 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10961 def min_apriori_support @min_apriori_support end |
#min_relative_progress ⇒ Float
When early_stop is true, stops training when accuracy improvement is less than
'min_relative_progress'. Used only for iterative training algorithms.
Corresponds to the JSON property minRelativeProgress
10967 10968 10969 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10967 def min_relative_progress @min_relative_progress end |
#min_split_loss ⇒ Float
Minimum split loss for boosted tree models.
Corresponds to the JSON property minSplitLoss
10972 10973 10974 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10972 def min_split_loss @min_split_loss end |
#min_time_series_length ⇒ Fixnum
The minimum number of time points in a time series that are used in modeling
the trend component of the time series. If you use this option you must also
set the timeSeriesLengthFraction
option. This training option ensures that
enough time points are available when you use timeSeriesLengthFraction
in
trend modeling. This is particularly important when forecasting multiple time
series in a single query using timeSeriesIdColumn
. If the total number of
time points is less than the minTimeSeriesLength
value, then the query uses
all available time points.
Corresponds to the JSON property minTimeSeriesLength
10984 10985 10986 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10984 def min_time_series_length @min_time_series_length end |
#min_tree_child_weight ⇒ Fixnum
Minimum sum of instance weight needed in a child for boosted tree models.
Corresponds to the JSON property minTreeChildWeight
10989 10990 10991 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10989 def min_tree_child_weight @min_tree_child_weight end |
#model_registry ⇒ String
The model registry.
Corresponds to the JSON property modelRegistry
10994 10995 10996 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10994 def model_registry @model_registry end |
#model_uri ⇒ String
Google Cloud Storage URI from which the model was imported. Only applicable
for imported models.
Corresponds to the JSON property modelUri
11000 11001 11002 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11000 def model_uri @model_uri end |
#non_seasonal_order ⇒ Google::Apis::BigqueryV2::ArimaOrder
Arima order, can be used for both non-seasonal and seasonal parts.
Corresponds to the JSON property nonSeasonalOrder
11005 11006 11007 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11005 def non_seasonal_order @non_seasonal_order end |
#num_clusters ⇒ Fixnum
Number of clusters for clustering models.
Corresponds to the JSON property numClusters
11010 11011 11012 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11010 def num_clusters @num_clusters end |
#num_factors ⇒ Fixnum
Num factors specified for matrix factorization models.
Corresponds to the JSON property numFactors
11015 11016 11017 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11015 def num_factors @num_factors end |
#num_parallel_tree ⇒ Fixnum
Number of parallel trees constructed during each iteration for boosted tree
models.
Corresponds to the JSON property numParallelTree
11021 11022 11023 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11021 def num_parallel_tree @num_parallel_tree end |
#num_principal_components ⇒ Fixnum
Number of principal components to keep in the PCA model. Must be <= the number
of features.
Corresponds to the JSON property numPrincipalComponents
11027 11028 11029 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11027 def num_principal_components @num_principal_components end |
#num_trials ⇒ Fixnum
Number of trials to run this hyperparameter tuning job.
Corresponds to the JSON property numTrials
11032 11033 11034 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11032 def num_trials @num_trials end |
#optimization_strategy ⇒ String
Optimization strategy for training linear regression models.
Corresponds to the JSON property optimizationStrategy
11037 11038 11039 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11037 def optimization_strategy @optimization_strategy end |
#optimizer ⇒ String
Optimizer used for training the neural nets.
Corresponds to the JSON property optimizer
11042 11043 11044 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11042 def optimizer @optimizer end |
#pca_explained_variance_ratio ⇒ Float
The minimum ratio of cumulative explained variance that needs to be given by
the PCA model.
Corresponds to the JSON property pcaExplainedVarianceRatio
11048 11049 11050 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11048 def pca_explained_variance_ratio @pca_explained_variance_ratio end |
#pca_solver ⇒ String
The solver for PCA.
Corresponds to the JSON property pcaSolver
11053 11054 11055 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11053 def pca_solver @pca_solver end |
#sampled_shapley_num_paths ⇒ Fixnum
Number of paths for the sampled Shapley explain method.
Corresponds to the JSON property sampledShapleyNumPaths
11058 11059 11060 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11058 def sampled_shapley_num_paths @sampled_shapley_num_paths end |
#scale_features ⇒ Boolean Also known as: scale_features?
If true, scale the feature values by dividing the feature standard deviation.
Currently only apply to PCA.
Corresponds to the JSON property scaleFeatures
11064 11065 11066 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11064 def scale_features @scale_features end |
#standardize_features ⇒ Boolean Also known as: standardize_features?
Whether to standardize numerical features. Default to true.
Corresponds to the JSON property standardizeFeatures
11070 11071 11072 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11070 def standardize_features @standardize_features end |
#subsample ⇒ Float
Subsample fraction of the training data to grow tree to prevent overfitting
for boosted tree models.
Corresponds to the JSON property subsample
11077 11078 11079 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11077 def subsample @subsample end |
#tf_version ⇒ String
Based on the selected TF version, the corresponding docker image is used to
train external models.
Corresponds to the JSON property tfVersion
11083 11084 11085 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11083 def tf_version @tf_version end |
#time_series_data_column ⇒ String
Column to be designated as time series data for ARIMA model.
Corresponds to the JSON property timeSeriesDataColumn
11088 11089 11090 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11088 def time_series_data_column @time_series_data_column end |
#time_series_id_column ⇒ String
The time series id column that was used during ARIMA model training.
Corresponds to the JSON property timeSeriesIdColumn
11093 11094 11095 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11093 def time_series_id_column @time_series_id_column end |
#time_series_id_columns ⇒ Array<String>
The time series id columns that were used during ARIMA model training.
Corresponds to the JSON property timeSeriesIdColumns
11098 11099 11100 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11098 def time_series_id_columns @time_series_id_columns end |
#time_series_length_fraction ⇒ Float
The fraction of the interpolated length of the time series that's used to
model the time series trend component. All of the time points of the time
series are used to model the non-trend component. This training option
accelerates modeling training without sacrificing much forecasting accuracy.
You can use this option with minTimeSeriesLength
but not with
maxTimeSeriesLength
.
Corresponds to the JSON property timeSeriesLengthFraction
11108 11109 11110 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11108 def time_series_length_fraction @time_series_length_fraction end |
#time_series_timestamp_column ⇒ String
Column to be designated as time series timestamp for ARIMA model.
Corresponds to the JSON property timeSeriesTimestampColumn
11113 11114 11115 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11113 def @time_series_timestamp_column end |
#tree_method ⇒ String
Tree construction algorithm for boosted tree models.
Corresponds to the JSON property treeMethod
11118 11119 11120 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11118 def tree_method @tree_method end |
#trend_smoothing_window_size ⇒ Fixnum
Smoothing window size for the trend component. When a positive value is
specified, a center moving average smoothing is applied on the history trend.
When the smoothing window is out of the boundary at the beginning or the end
of the trend, the first element or the last element is padded to fill the
smoothing window before the average is applied.
Corresponds to the JSON property trendSmoothingWindowSize
11127 11128 11129 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11127 def trend_smoothing_window_size @trend_smoothing_window_size end |
#user_column ⇒ String
User column specified for matrix factorization models.
Corresponds to the JSON property userColumn
11132 11133 11134 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11132 def user_column @user_column end |
#vertex_ai_model_version_aliases ⇒ Array<String>
The version aliases to apply in Vertex AI model registry. Always overwrite if
the version aliases exists in a existing model.
Corresponds to the JSON property vertexAiModelVersionAliases
11138 11139 11140 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11138 def vertex_ai_model_version_aliases @vertex_ai_model_version_aliases end |
#wals_alpha ⇒ Float
Hyperparameter for matrix factoration when implicit feedback type is specified.
Corresponds to the JSON property walsAlpha
11143 11144 11145 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11143 def wals_alpha @wals_alpha end |
#warm_start ⇒ Boolean Also known as: warm_start?
Whether to train a model from the last checkpoint.
Corresponds to the JSON property warmStart
11148 11149 11150 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11148 def warm_start @warm_start end |
#xgboost_version ⇒ String
User-selected XGBoost versions for training of XGBoost models.
Corresponds to the JSON property xgboostVersion
11154 11155 11156 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11154 def xgboost_version @xgboost_version end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11161 def update!(**args) @activation_fn = args[:activation_fn] if args.key?(:activation_fn) @adjust_step_changes = args[:adjust_step_changes] if args.key?(:adjust_step_changes) @approx_global_feature_contrib = args[:approx_global_feature_contrib] if args.key?(:approx_global_feature_contrib) @auto_arima = args[:auto_arima] if args.key?(:auto_arima) @auto_arima_max_order = args[:auto_arima_max_order] if args.key?(:auto_arima_max_order) @auto_arima_min_order = args[:auto_arima_min_order] if args.key?(:auto_arima_min_order) @auto_class_weights = args[:auto_class_weights] if args.key?(:auto_class_weights) @batch_size = args[:batch_size] if args.key?(:batch_size) @booster_type = args[:booster_type] if args.key?(:booster_type) @budget_hours = args[:budget_hours] if args.key?(:budget_hours) @calculate_p_values = args[:calculate_p_values] if args.key?(:calculate_p_values) @category_encoding_method = args[:category_encoding_method] if args.key?(:category_encoding_method) @clean_spikes_and_dips = args[:clean_spikes_and_dips] if args.key?(:clean_spikes_and_dips) @color_space = args[:color_space] if args.key?(:color_space) @colsample_bylevel = args[:colsample_bylevel] if args.key?(:colsample_bylevel) @colsample_bynode = args[:colsample_bynode] if args.key?(:colsample_bynode) @colsample_bytree = args[:colsample_bytree] if args.key?(:colsample_bytree) @contribution_metric = args[:contribution_metric] if args.key?(:contribution_metric) @dart_normalize_type = args[:dart_normalize_type] if args.key?(:dart_normalize_type) @data_frequency = args[:data_frequency] if args.key?(:data_frequency) @data_split_column = args[:data_split_column] if args.key?(:data_split_column) @data_split_eval_fraction = args[:data_split_eval_fraction] if args.key?(:data_split_eval_fraction) @data_split_method = args[:data_split_method] if args.key?(:data_split_method) @decompose_time_series = args[:decompose_time_series] if args.key?(:decompose_time_series) @dimension_id_columns = args[:dimension_id_columns] if args.key?(:dimension_id_columns) @distance_type = args[:distance_type] if args.key?(:distance_type) @dropout = args[:dropout] if args.key?(:dropout) @early_stop = args[:early_stop] if args.key?(:early_stop) @enable_global_explain = args[:enable_global_explain] if args.key?(:enable_global_explain) @feedback_type = args[:feedback_type] if args.key?(:feedback_type) @fit_intercept = args[:fit_intercept] if args.key?(:fit_intercept) @hidden_units = args[:hidden_units] if args.key?(:hidden_units) @holiday_region = args[:holiday_region] if args.key?(:holiday_region) @holiday_regions = args[:holiday_regions] if args.key?(:holiday_regions) @horizon = args[:horizon] if args.key?(:horizon) @hparam_tuning_objectives = args[:hparam_tuning_objectives] if args.key?(:hparam_tuning_objectives) @include_drift = args[:include_drift] if args.key?(:include_drift) @initial_learn_rate = args[:initial_learn_rate] if args.key?(:initial_learn_rate) @input_label_columns = args[:input_label_columns] if args.key?(:input_label_columns) @instance_weight_column = args[:instance_weight_column] if args.key?(:instance_weight_column) @integrated_gradients_num_steps = args[:integrated_gradients_num_steps] if args.key?(:integrated_gradients_num_steps) @is_test_column = args[:is_test_column] if args.key?(:is_test_column) @item_column = args[:item_column] if args.key?(:item_column) @kmeans_initialization_column = args[:kmeans_initialization_column] if args.key?(:kmeans_initialization_column) @kmeans_initialization_method = args[:kmeans_initialization_method] if args.key?(:kmeans_initialization_method) @l1_reg_activation = args[:l1_reg_activation] if args.key?(:l1_reg_activation) @l1_regularization = args[:l1_regularization] if args.key?(:l1_regularization) @l2_regularization = args[:l2_regularization] if args.key?(:l2_regularization) @label_class_weights = args[:label_class_weights] if args.key?(:label_class_weights) @learn_rate = args[:learn_rate] if args.key?(:learn_rate) @learn_rate_strategy = args[:learn_rate_strategy] if args.key?(:learn_rate_strategy) @loss_type = args[:loss_type] if args.key?(:loss_type) @max_iterations = args[:max_iterations] if args.key?(:max_iterations) @max_parallel_trials = args[:max_parallel_trials] if args.key?(:max_parallel_trials) @max_time_series_length = args[:max_time_series_length] if args.key?(:max_time_series_length) @max_tree_depth = args[:max_tree_depth] if args.key?(:max_tree_depth) @min_apriori_support = args[:min_apriori_support] if args.key?(:min_apriori_support) @min_relative_progress = args[:min_relative_progress] if args.key?(:min_relative_progress) @min_split_loss = args[:min_split_loss] if args.key?(:min_split_loss) @min_time_series_length = args[:min_time_series_length] if args.key?(:min_time_series_length) @min_tree_child_weight = args[:min_tree_child_weight] if args.key?(:min_tree_child_weight) @model_registry = args[:model_registry] if args.key?(:model_registry) @model_uri = args[:model_uri] if args.key?(:model_uri) @non_seasonal_order = args[:non_seasonal_order] if args.key?(:non_seasonal_order) @num_clusters = args[:num_clusters] if args.key?(:num_clusters) @num_factors = args[:num_factors] if args.key?(:num_factors) @num_parallel_tree = args[:num_parallel_tree] if args.key?(:num_parallel_tree) @num_principal_components = args[:num_principal_components] if args.key?(:num_principal_components) @num_trials = args[:num_trials] if args.key?(:num_trials) @optimization_strategy = args[:optimization_strategy] if args.key?(:optimization_strategy) @optimizer = args[:optimizer] if args.key?(:optimizer) @pca_explained_variance_ratio = args[:pca_explained_variance_ratio] if args.key?(:pca_explained_variance_ratio) @pca_solver = args[:pca_solver] if args.key?(:pca_solver) @sampled_shapley_num_paths = args[:sampled_shapley_num_paths] if args.key?(:sampled_shapley_num_paths) @scale_features = args[:scale_features] if args.key?(:scale_features) @standardize_features = args[:standardize_features] if args.key?(:standardize_features) @subsample = args[:subsample] if args.key?(:subsample) @tf_version = args[:tf_version] if args.key?(:tf_version) @time_series_data_column = args[:time_series_data_column] if args.key?(:time_series_data_column) @time_series_id_column = args[:time_series_id_column] if args.key?(:time_series_id_column) @time_series_id_columns = args[:time_series_id_columns] if args.key?(:time_series_id_columns) @time_series_length_fraction = args[:time_series_length_fraction] if args.key?(:time_series_length_fraction) @time_series_timestamp_column = args[:time_series_timestamp_column] if args.key?(:time_series_timestamp_column) @tree_method = args[:tree_method] if args.key?(:tree_method) @trend_smoothing_window_size = args[:trend_smoothing_window_size] if args.key?(:trend_smoothing_window_size) @user_column = args[:user_column] if args.key?(:user_column) @vertex_ai_model_version_aliases = args[:vertex_ai_model_version_aliases] if args.key?(:vertex_ai_model_version_aliases) @wals_alpha = args[:wals_alpha] if args.key?(:wals_alpha) @warm_start = args[:warm_start] if args.key?(:warm_start) @xgboost_version = args[:xgboost_version] if args.key?(:xgboost_version) end |