Class: Google::Apis::DatalabelingV1beta1::GoogleCloudDatalabelingV1beta1EvaluationJobConfig

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/datalabeling_v1beta1/classes.rb,
lib/google/apis/datalabeling_v1beta1/representations.rb,
lib/google/apis/datalabeling_v1beta1/representations.rb

Overview

Configures specific details of how a continuous evaluation job works. Provide this configuration when you create an EvaluationJob.

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudDatalabelingV1beta1EvaluationJobConfig

Returns a new instance of GoogleCloudDatalabelingV1beta1EvaluationJobConfig.



1976
1977
1978
# File 'lib/google/apis/datalabeling_v1beta1/classes.rb', line 1976

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#bigquery_import_keysHash<String,String>

Required. Prediction keys that tell Data Labeling Service where to find the data for evaluation in your BigQuery table. When the service samples prediction input and output from your model version and saves it to BigQuery, the data gets stored as JSON strings in the BigQuery table. These keys tell Data Labeling Service how to parse the JSON. You can provide the following entries in this field: * data_json_key: the data key for prediction input. You must provide either this key or reference_json_key. * reference_json_key: the data reference key for prediction input. You must provide either this key or data_json_key. * label_json_key: the label key for prediction output. Required. * label_score_json_key: the score key for prediction output. Required. * bounding_box_json_key: the bounding box key for prediction output. Required if your model version perform image object detection. Learn how to configure prediction keys. Corresponds to the JSON property bigqueryImportKeys

Returns:

  • (Hash<String,String>)


1921
1922
1923
# File 'lib/google/apis/datalabeling_v1beta1/classes.rb', line 1921

def bigquery_import_keys
  @bigquery_import_keys
end

#bounding_poly_configGoogle::Apis::DatalabelingV1beta1::GoogleCloudDatalabelingV1beta1BoundingPolyConfig

Config for image bounding poly (and bounding box) human labeling task. Corresponds to the JSON property boundingPolyConfig



1926
1927
1928
# File 'lib/google/apis/datalabeling_v1beta1/classes.rb', line 1926

def bounding_poly_config
  @bounding_poly_config
end

#evaluation_configGoogle::Apis::DatalabelingV1beta1::GoogleCloudDatalabelingV1beta1EvaluationConfig

Configuration details used for calculating evaluation metrics and creating an Evaluation. Corresponds to the JSON property evaluationConfig



1932
1933
1934
# File 'lib/google/apis/datalabeling_v1beta1/classes.rb', line 1932

def evaluation_config
  @evaluation_config
end

#evaluation_job_alert_configGoogle::Apis::DatalabelingV1beta1::GoogleCloudDatalabelingV1beta1EvaluationJobAlertConfig

Provides details for how an evaluation job sends email alerts based on the results of a run. Corresponds to the JSON property evaluationJobAlertConfig



1938
1939
1940
# File 'lib/google/apis/datalabeling_v1beta1/classes.rb', line 1938

def evaluation_job_alert_config
  @evaluation_job_alert_config
end

#example_countFixnum

Required. The maximum number of predictions to sample and save to BigQuery during each evaluation interval. This limit overrides example_sample_percentage: even if the service has not sampled enough predictions to fulfill example_sample_perecentage during an interval, it stops sampling predictions when it meets this limit. Corresponds to the JSON property exampleCount

Returns:

  • (Fixnum)


1947
1948
1949
# File 'lib/google/apis/datalabeling_v1beta1/classes.rb', line 1947

def example_count
  @example_count
end

#example_sample_percentageFloat

Required. Fraction of predictions to sample and save to BigQuery during each evaluation interval. For example, 0.1 means 10% of predictions served by your model version get saved to BigQuery. Corresponds to the JSON property exampleSamplePercentage

Returns:

  • (Float)


1954
1955
1956
# File 'lib/google/apis/datalabeling_v1beta1/classes.rb', line 1954

def example_sample_percentage
  @example_sample_percentage
end

#human_annotation_configGoogle::Apis::DatalabelingV1beta1::GoogleCloudDatalabelingV1beta1HumanAnnotationConfig

Configuration for how human labeling task should be done. Corresponds to the JSON property humanAnnotationConfig



1959
1960
1961
# File 'lib/google/apis/datalabeling_v1beta1/classes.rb', line 1959

def human_annotation_config
  @human_annotation_config
end

#image_classification_configGoogle::Apis::DatalabelingV1beta1::GoogleCloudDatalabelingV1beta1ImageClassificationConfig

Config for image classification human labeling task. Corresponds to the JSON property imageClassificationConfig



1964
1965
1966
# File 'lib/google/apis/datalabeling_v1beta1/classes.rb', line 1964

def image_classification_config
  @image_classification_config
end

#input_configGoogle::Apis::DatalabelingV1beta1::GoogleCloudDatalabelingV1beta1InputConfig

The configuration of input data, including data type, location, etc. Corresponds to the JSON property inputConfig



1969
1970
1971
# File 'lib/google/apis/datalabeling_v1beta1/classes.rb', line 1969

def input_config
  @input_config
end

#text_classification_configGoogle::Apis::DatalabelingV1beta1::GoogleCloudDatalabelingV1beta1TextClassificationConfig

Config for text classification human labeling task. Corresponds to the JSON property textClassificationConfig



1974
1975
1976
# File 'lib/google/apis/datalabeling_v1beta1/classes.rb', line 1974

def text_classification_config
  @text_classification_config
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
# File 'lib/google/apis/datalabeling_v1beta1/classes.rb', line 1981

def update!(**args)
  @bigquery_import_keys = args[:bigquery_import_keys] if args.key?(:bigquery_import_keys)
  @bounding_poly_config = args[:bounding_poly_config] if args.key?(:bounding_poly_config)
  @evaluation_config = args[:evaluation_config] if args.key?(:evaluation_config)
  @evaluation_job_alert_config = args[:evaluation_job_alert_config] if args.key?(:evaluation_job_alert_config)
  @example_count = args[:example_count] if args.key?(:example_count)
  @example_sample_percentage = args[:example_sample_percentage] if args.key?(:example_sample_percentage)
  @human_annotation_config = args[:human_annotation_config] if args.key?(:human_annotation_config)
  @image_classification_config = args[:image_classification_config] if args.key?(:image_classification_config)
  @input_config = args[:input_config] if args.key?(:input_config)
  @text_classification_config = args[:text_classification_config] if args.key?(:text_classification_config)
end