Class: Google::Apis::DlpV2::GooglePrivacyDlpV2PrivacyMetric
- Inherits:
-
Object
- Object
- Google::Apis::DlpV2::GooglePrivacyDlpV2PrivacyMetric
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/dlp_v2/classes.rb,
lib/google/apis/dlp_v2/representations.rb,
lib/google/apis/dlp_v2/representations.rb
Overview
Privacy metric to compute for reidentification risk analysis.
Instance Attribute Summary collapse
-
#categorical_stats_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2CategoricalStatsConfig
Compute numerical stats over an individual column, including number of distinct values and value count distribution.
-
#delta_presence_estimation_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2DeltaPresenceEstimationConfig
δ-presence metric, used to estimate how likely it is for an attacker to figure out that one given individual appears in a de-identified dataset.
-
#k_anonymity_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2KAnonymityConfig
k-anonymity metric, used for analysis of reidentification risk.
-
#k_map_estimation_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2KMapEstimationConfig
Reidentifiability metric.
-
#l_diversity_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2LDiversityConfig
l-diversity metric, used for analysis of reidentification risk.
-
#numerical_stats_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2NumericalStatsConfig
Compute numerical stats over an individual column, including min, max, and quantiles.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GooglePrivacyDlpV2PrivacyMetric
constructor
A new instance of GooglePrivacyDlpV2PrivacyMetric.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GooglePrivacyDlpV2PrivacyMetric
Returns a new instance of GooglePrivacyDlpV2PrivacyMetric.
4940 4941 4942 |
# File 'lib/google/apis/dlp_v2/classes.rb', line 4940 def initialize(**args) update!(**args) end |
Instance Attribute Details
#categorical_stats_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2CategoricalStatsConfig
Compute numerical stats over an individual column, including number of
distinct values and value count distribution.
Corresponds to the JSON property categoricalStatsConfig
4904 4905 4906 |
# File 'lib/google/apis/dlp_v2/classes.rb', line 4904 def categorical_stats_config @categorical_stats_config end |
#delta_presence_estimation_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2DeltaPresenceEstimationConfig
δ-presence metric, used to estimate how likely it is for an attacker to figure
out that one given individual appears in a de-identified dataset. Similarly to
the k-map metric, we cannot compute δ-presence exactly without knowing the
attack dataset, so we use a statistical model instead.
Corresponds to the JSON property deltaPresenceEstimationConfig
4912 4913 4914 |
# File 'lib/google/apis/dlp_v2/classes.rb', line 4912 def delta_presence_estimation_config @delta_presence_estimation_config end |
#k_anonymity_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2KAnonymityConfig
k-anonymity metric, used for analysis of reidentification risk.
Corresponds to the JSON property kAnonymityConfig
4917 4918 4919 |
# File 'lib/google/apis/dlp_v2/classes.rb', line 4917 def k_anonymity_config @k_anonymity_config end |
#k_map_estimation_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2KMapEstimationConfig
Reidentifiability metric. This corresponds to a risk model similar to what is
called "journalist risk" in the literature, except the attack dataset is
statistically modeled instead of being perfectly known. This can be done using
publicly available data (like the US Census), or using a custom statistical
model (indicated as one or several BigQuery tables), or by extrapolating from
the distribution of values in the input dataset.
Corresponds to the JSON property kMapEstimationConfig
4927 4928 4929 |
# File 'lib/google/apis/dlp_v2/classes.rb', line 4927 def k_map_estimation_config @k_map_estimation_config end |
#l_diversity_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2LDiversityConfig
l-diversity metric, used for analysis of reidentification risk.
Corresponds to the JSON property lDiversityConfig
4932 4933 4934 |
# File 'lib/google/apis/dlp_v2/classes.rb', line 4932 def l_diversity_config @l_diversity_config end |
#numerical_stats_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2NumericalStatsConfig
Compute numerical stats over an individual column, including min, max, and
quantiles.
Corresponds to the JSON property numericalStatsConfig
4938 4939 4940 |
# File 'lib/google/apis/dlp_v2/classes.rb', line 4938 def numerical_stats_config @numerical_stats_config end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
4945 4946 4947 4948 4949 4950 4951 4952 |
# File 'lib/google/apis/dlp_v2/classes.rb', line 4945 def update!(**args) @categorical_stats_config = args[:categorical_stats_config] if args.key?(:categorical_stats_config) @delta_presence_estimation_config = args[:delta_presence_estimation_config] if args.key?(:delta_presence_estimation_config) @k_anonymity_config = args[:k_anonymity_config] if args.key?(:k_anonymity_config) @k_map_estimation_config = args[:k_map_estimation_config] if args.key?(:k_map_estimation_config) @l_diversity_config = args[:l_diversity_config] if args.key?(:l_diversity_config) @numerical_stats_config = args[:numerical_stats_config] if args.key?(:numerical_stats_config) end |