Class: Google::Apis::DlpV2::GooglePrivacyDlpV2PrivacyMetric
- Inherits:
-
Object
- Object
- Google::Apis::DlpV2::GooglePrivacyDlpV2PrivacyMetric
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/dlp_v2/classes.rb,
lib/google/apis/dlp_v2/representations.rb,
lib/google/apis/dlp_v2/representations.rb
Overview
Privacy metric to compute for reidentification risk analysis.
Instance Attribute Summary collapse
-
#categorical_stats_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2CategoricalStatsConfig
Compute numerical stats over an individual column, including number of distinct values and value count distribution.
-
#delta_presence_estimation_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2DeltaPresenceEstimationConfig
δ-presence metric, used to estimate how likely it is for an attacker to figure out that one given individual appears in a de-identified dataset.
-
#k_anonymity_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2KAnonymityConfig
k-anonymity metric, used for analysis of reidentification risk.
-
#k_map_estimation_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2KMapEstimationConfig
Reidentifiability metric.
-
#l_diversity_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2LDiversityConfig
l-diversity metric, used for analysis of reidentification risk.
-
#numerical_stats_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2NumericalStatsConfig
Compute numerical stats over an individual column, including min, max, and quantiles.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GooglePrivacyDlpV2PrivacyMetric
constructor
A new instance of GooglePrivacyDlpV2PrivacyMetric.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GooglePrivacyDlpV2PrivacyMetric
Returns a new instance of GooglePrivacyDlpV2PrivacyMetric.
4954 4955 4956 |
# File 'lib/google/apis/dlp_v2/classes.rb', line 4954 def initialize(**args) update!(**args) end |
Instance Attribute Details
#categorical_stats_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2CategoricalStatsConfig
Compute numerical stats over an individual column, including number of
distinct values and value count distribution.
Corresponds to the JSON property categoricalStatsConfig
4918 4919 4920 |
# File 'lib/google/apis/dlp_v2/classes.rb', line 4918 def categorical_stats_config @categorical_stats_config end |
#delta_presence_estimation_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2DeltaPresenceEstimationConfig
δ-presence metric, used to estimate how likely it is for an attacker to figure
out that one given individual appears in a de-identified dataset. Similarly to
the k-map metric, we cannot compute δ-presence exactly without knowing the
attack dataset, so we use a statistical model instead.
Corresponds to the JSON property deltaPresenceEstimationConfig
4926 4927 4928 |
# File 'lib/google/apis/dlp_v2/classes.rb', line 4926 def delta_presence_estimation_config @delta_presence_estimation_config end |
#k_anonymity_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2KAnonymityConfig
k-anonymity metric, used for analysis of reidentification risk.
Corresponds to the JSON property kAnonymityConfig
4931 4932 4933 |
# File 'lib/google/apis/dlp_v2/classes.rb', line 4931 def k_anonymity_config @k_anonymity_config end |
#k_map_estimation_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2KMapEstimationConfig
Reidentifiability metric. This corresponds to a risk model similar to what is
called "journalist risk" in the literature, except the attack dataset is
statistically modeled instead of being perfectly known. This can be done using
publicly available data (like the US Census), or using a custom statistical
model (indicated as one or several BigQuery tables), or by extrapolating from
the distribution of values in the input dataset.
Corresponds to the JSON property kMapEstimationConfig
4941 4942 4943 |
# File 'lib/google/apis/dlp_v2/classes.rb', line 4941 def k_map_estimation_config @k_map_estimation_config end |
#l_diversity_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2LDiversityConfig
l-diversity metric, used for analysis of reidentification risk.
Corresponds to the JSON property lDiversityConfig
4946 4947 4948 |
# File 'lib/google/apis/dlp_v2/classes.rb', line 4946 def l_diversity_config @l_diversity_config end |
#numerical_stats_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2NumericalStatsConfig
Compute numerical stats over an individual column, including min, max, and
quantiles.
Corresponds to the JSON property numericalStatsConfig
4952 4953 4954 |
# File 'lib/google/apis/dlp_v2/classes.rb', line 4952 def numerical_stats_config @numerical_stats_config end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
4959 4960 4961 4962 4963 4964 4965 4966 |
# File 'lib/google/apis/dlp_v2/classes.rb', line 4959 def update!(**args) @categorical_stats_config = args[:categorical_stats_config] if args.key?(:categorical_stats_config) @delta_presence_estimation_config = args[:delta_presence_estimation_config] if args.key?(:delta_presence_estimation_config) @k_anonymity_config = args[:k_anonymity_config] if args.key?(:k_anonymity_config) @k_map_estimation_config = args[:k_map_estimation_config] if args.key?(:k_map_estimation_config) @l_diversity_config = args[:l_diversity_config] if args.key?(:l_diversity_config) @numerical_stats_config = args[:numerical_stats_config] if args.key?(:numerical_stats_config) end |