Class: Google::Apis::DlpV2::GooglePrivacyDlpV2PrivacyMetric
- Inherits:
-
Object
- Object
- Google::Apis::DlpV2::GooglePrivacyDlpV2PrivacyMetric
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/dlp_v2/classes.rb,
lib/google/apis/dlp_v2/representations.rb,
lib/google/apis/dlp_v2/representations.rb
Overview
Privacy metric to compute for reidentification risk analysis.
Instance Attribute Summary collapse
-
#categorical_stats_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2CategoricalStatsConfig
Compute numerical stats over an individual column, including number of distinct values and value count distribution.
-
#delta_presence_estimation_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2DeltaPresenceEstimationConfig
δ-presence metric, used to estimate how likely it is for an attacker to figure out that one given individual appears in a de-identified dataset.
-
#k_anonymity_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2KAnonymityConfig
k-anonymity metric, used for analysis of reidentification risk.
-
#k_map_estimation_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2KMapEstimationConfig
Reidentifiability metric.
-
#l_diversity_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2LDiversityConfig
l-diversity metric, used for analysis of reidentification risk.
-
#numerical_stats_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2NumericalStatsConfig
Compute numerical stats over an individual column, including min, max, and quantiles.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GooglePrivacyDlpV2PrivacyMetric
constructor
A new instance of GooglePrivacyDlpV2PrivacyMetric.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GooglePrivacyDlpV2PrivacyMetric
Returns a new instance of GooglePrivacyDlpV2PrivacyMetric.
5492 5493 5494 |
# File 'lib/google/apis/dlp_v2/classes.rb', line 5492 def initialize(**args) update!(**args) end |
Instance Attribute Details
#categorical_stats_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2CategoricalStatsConfig
Compute numerical stats over an individual column, including number of
distinct values and value count distribution.
Corresponds to the JSON property categoricalStatsConfig
5456 5457 5458 |
# File 'lib/google/apis/dlp_v2/classes.rb', line 5456 def categorical_stats_config @categorical_stats_config end |
#delta_presence_estimation_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2DeltaPresenceEstimationConfig
δ-presence metric, used to estimate how likely it is for an attacker to figure
out that one given individual appears in a de-identified dataset. Similarly to
the k-map metric, we cannot compute δ-presence exactly without knowing the
attack dataset, so we use a statistical model instead.
Corresponds to the JSON property deltaPresenceEstimationConfig
5464 5465 5466 |
# File 'lib/google/apis/dlp_v2/classes.rb', line 5464 def delta_presence_estimation_config @delta_presence_estimation_config end |
#k_anonymity_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2KAnonymityConfig
k-anonymity metric, used for analysis of reidentification risk.
Corresponds to the JSON property kAnonymityConfig
5469 5470 5471 |
# File 'lib/google/apis/dlp_v2/classes.rb', line 5469 def k_anonymity_config @k_anonymity_config end |
#k_map_estimation_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2KMapEstimationConfig
Reidentifiability metric. This corresponds to a risk model similar to what is
called "journalist risk" in the literature, except the attack dataset is
statistically modeled instead of being perfectly known. This can be done using
publicly available data (like the US Census), or using a custom statistical
model (indicated as one or several BigQuery tables), or by extrapolating from
the distribution of values in the input dataset.
Corresponds to the JSON property kMapEstimationConfig
5479 5480 5481 |
# File 'lib/google/apis/dlp_v2/classes.rb', line 5479 def k_map_estimation_config @k_map_estimation_config end |
#l_diversity_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2LDiversityConfig
l-diversity metric, used for analysis of reidentification risk.
Corresponds to the JSON property lDiversityConfig
5484 5485 5486 |
# File 'lib/google/apis/dlp_v2/classes.rb', line 5484 def l_diversity_config @l_diversity_config end |
#numerical_stats_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2NumericalStatsConfig
Compute numerical stats over an individual column, including min, max, and
quantiles.
Corresponds to the JSON property numericalStatsConfig
5490 5491 5492 |
# File 'lib/google/apis/dlp_v2/classes.rb', line 5490 def numerical_stats_config @numerical_stats_config end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
5497 5498 5499 5500 5501 5502 5503 5504 |
# File 'lib/google/apis/dlp_v2/classes.rb', line 5497 def update!(**args) @categorical_stats_config = args[:categorical_stats_config] if args.key?(:categorical_stats_config) @delta_presence_estimation_config = args[:delta_presence_estimation_config] if args.key?(:delta_presence_estimation_config) @k_anonymity_config = args[:k_anonymity_config] if args.key?(:k_anonymity_config) @k_map_estimation_config = args[:k_map_estimation_config] if args.key?(:k_map_estimation_config) @l_diversity_config = args[:l_diversity_config] if args.key?(:l_diversity_config) @numerical_stats_config = args[:numerical_stats_config] if args.key?(:numerical_stats_config) end |