Class: Google::Apis::DlpV2::GooglePrivacyDlpV2PrivacyMetric
- Inherits:
-
Object
- Object
- Google::Apis::DlpV2::GooglePrivacyDlpV2PrivacyMetric
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/dlp_v2/classes.rb,
lib/google/apis/dlp_v2/representations.rb,
lib/google/apis/dlp_v2/representations.rb
Overview
Privacy metric to compute for reidentification risk analysis.
Instance Attribute Summary collapse
-
#categorical_stats_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2CategoricalStatsConfig
Compute numerical stats over an individual column, including number of distinct values and value count distribution.
-
#delta_presence_estimation_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2DeltaPresenceEstimationConfig
δ-presence metric, used to estimate how likely it is for an attacker to figure out that one given individual appears in a de-identified dataset.
-
#k_anonymity_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2KAnonymityConfig
k-anonymity metric, used for analysis of reidentification risk.
-
#k_map_estimation_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2KMapEstimationConfig
Reidentifiability metric.
-
#l_diversity_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2LDiversityConfig
l-diversity metric, used for analysis of reidentification risk.
-
#numerical_stats_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2NumericalStatsConfig
Compute numerical stats over an individual column, including min, max, and quantiles.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GooglePrivacyDlpV2PrivacyMetric
constructor
A new instance of GooglePrivacyDlpV2PrivacyMetric.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GooglePrivacyDlpV2PrivacyMetric
Returns a new instance of GooglePrivacyDlpV2PrivacyMetric.
7415 7416 7417 |
# File 'lib/google/apis/dlp_v2/classes.rb', line 7415 def initialize(**args) update!(**args) end |
Instance Attribute Details
#categorical_stats_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2CategoricalStatsConfig
Compute numerical stats over an individual column, including number of
distinct values and value count distribution.
Corresponds to the JSON property categoricalStatsConfig
7379 7380 7381 |
# File 'lib/google/apis/dlp_v2/classes.rb', line 7379 def categorical_stats_config @categorical_stats_config end |
#delta_presence_estimation_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2DeltaPresenceEstimationConfig
δ-presence metric, used to estimate how likely it is for an attacker to figure
out that one given individual appears in a de-identified dataset. Similarly to
the k-map metric, we cannot compute δ-presence exactly without knowing the
attack dataset, so we use a statistical model instead.
Corresponds to the JSON property deltaPresenceEstimationConfig
7387 7388 7389 |
# File 'lib/google/apis/dlp_v2/classes.rb', line 7387 def delta_presence_estimation_config @delta_presence_estimation_config end |
#k_anonymity_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2KAnonymityConfig
k-anonymity metric, used for analysis of reidentification risk.
Corresponds to the JSON property kAnonymityConfig
7392 7393 7394 |
# File 'lib/google/apis/dlp_v2/classes.rb', line 7392 def k_anonymity_config @k_anonymity_config end |
#k_map_estimation_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2KMapEstimationConfig
Reidentifiability metric. This corresponds to a risk model similar to what is
called "journalist risk" in the literature, except the attack dataset is
statistically modeled instead of being perfectly known. This can be done using
publicly available data (like the US Census), or using a custom statistical
model (indicated as one or several BigQuery tables), or by extrapolating from
the distribution of values in the input dataset.
Corresponds to the JSON property kMapEstimationConfig
7402 7403 7404 |
# File 'lib/google/apis/dlp_v2/classes.rb', line 7402 def k_map_estimation_config @k_map_estimation_config end |
#l_diversity_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2LDiversityConfig
l-diversity metric, used for analysis of reidentification risk.
Corresponds to the JSON property lDiversityConfig
7407 7408 7409 |
# File 'lib/google/apis/dlp_v2/classes.rb', line 7407 def l_diversity_config @l_diversity_config end |
#numerical_stats_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2NumericalStatsConfig
Compute numerical stats over an individual column, including min, max, and
quantiles.
Corresponds to the JSON property numericalStatsConfig
7413 7414 7415 |
# File 'lib/google/apis/dlp_v2/classes.rb', line 7413 def numerical_stats_config @numerical_stats_config end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
7420 7421 7422 7423 7424 7425 7426 7427 |
# File 'lib/google/apis/dlp_v2/classes.rb', line 7420 def update!(**args) @categorical_stats_config = args[:categorical_stats_config] if args.key?(:categorical_stats_config) @delta_presence_estimation_config = args[:delta_presence_estimation_config] if args.key?(:delta_presence_estimation_config) @k_anonymity_config = args[:k_anonymity_config] if args.key?(:k_anonymity_config) @k_map_estimation_config = args[:k_map_estimation_config] if args.key?(:k_map_estimation_config) @l_diversity_config = args[:l_diversity_config] if args.key?(:l_diversity_config) @numerical_stats_config = args[:numerical_stats_config] if args.key?(:numerical_stats_config) end |