Class: Google::Apis::LanguageV1::XpsConfidenceMetricsEntry
- Inherits:
-
Object
- Object
- Google::Apis::LanguageV1::XpsConfidenceMetricsEntry
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/language_v1/classes.rb,
lib/google/apis/language_v1/representations.rb,
lib/google/apis/language_v1/representations.rb
Overview
ConfidenceMetricsEntry includes generic precision, recall, f1 score etc. Next tag: 16.
Instance Attribute Summary collapse
-
#confidence_threshold ⇒ Float
Metrics are computed with an assumption that the model never return predictions with score lower than this value.
-
#f1_score ⇒ Float
The harmonic mean of recall and precision.
-
#f1_score_at1 ⇒ Float
The harmonic mean of recall_at1 and precision_at1.
-
#false_negative_count ⇒ Fixnum
The number of ground truth labels that are not matched by a model created label.
-
#false_positive_count ⇒ Fixnum
The number of model created labels that do not match a ground truth label.
-
#false_positive_rate ⇒ Float
False Positive Rate for the given confidence threshold.
-
#false_positive_rate_at1 ⇒ Float
The False Positive Rate when only considering the label that has the highest prediction score and not below the confidence threshold for each example.
-
#position_threshold ⇒ Fixnum
Metrics are computed with an assumption that the model always returns at most this many predictions (ordered by their score, descendingly), but they all still need to meet the confidence_threshold.
-
#precision ⇒ Float
Precision for the given confidence threshold.
-
#precision_at1 ⇒ Float
The precision when only considering the label that has the highest prediction score and not below the confidence threshold for each example.
-
#recall ⇒ Float
Recall (true positive rate) for the given confidence threshold.
-
#recall_at1 ⇒ Float
The recall (true positive rate) when only considering the label that has the highest prediction score and not below the confidence threshold for each example.
-
#true_negative_count ⇒ Fixnum
The number of labels that were not created by the model, but if they would, they would not match a ground truth label.
-
#true_positive_count ⇒ Fixnum
The number of model created labels that match a ground truth label.
Instance Method Summary collapse
-
#initialize(**args) ⇒ XpsConfidenceMetricsEntry
constructor
A new instance of XpsConfidenceMetricsEntry.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ XpsConfidenceMetricsEntry
Returns a new instance of XpsConfidenceMetricsEntry.
1842 1843 1844 |
# File 'lib/google/apis/language_v1/classes.rb', line 1842 def initialize(**args) update!(**args) end |
Instance Attribute Details
#confidence_threshold ⇒ Float
Metrics are computed with an assumption that the model never return
predictions with score lower than this value.
Corresponds to the JSON property confidenceThreshold
1767 1768 1769 |
# File 'lib/google/apis/language_v1/classes.rb', line 1767 def confidence_threshold @confidence_threshold end |
#f1_score ⇒ Float
The harmonic mean of recall and precision.
Corresponds to the JSON property f1Score
1772 1773 1774 |
# File 'lib/google/apis/language_v1/classes.rb', line 1772 def f1_score @f1_score end |
#f1_score_at1 ⇒ Float
The harmonic mean of recall_at1 and precision_at1.
Corresponds to the JSON property f1ScoreAt1
1777 1778 1779 |
# File 'lib/google/apis/language_v1/classes.rb', line 1777 def f1_score_at1 @f1_score_at1 end |
#false_negative_count ⇒ Fixnum
The number of ground truth labels that are not matched by a model created
label.
Corresponds to the JSON property falseNegativeCount
1783 1784 1785 |
# File 'lib/google/apis/language_v1/classes.rb', line 1783 def false_negative_count @false_negative_count end |
#false_positive_count ⇒ Fixnum
The number of model created labels that do not match a ground truth label.
Corresponds to the JSON property falsePositiveCount
1788 1789 1790 |
# File 'lib/google/apis/language_v1/classes.rb', line 1788 def false_positive_count @false_positive_count end |
#false_positive_rate ⇒ Float
False Positive Rate for the given confidence threshold.
Corresponds to the JSON property falsePositiveRate
1793 1794 1795 |
# File 'lib/google/apis/language_v1/classes.rb', line 1793 def false_positive_rate @false_positive_rate end |
#false_positive_rate_at1 ⇒ Float
The False Positive Rate when only considering the label that has the highest
prediction score and not below the confidence threshold for each example.
Corresponds to the JSON property falsePositiveRateAt1
1799 1800 1801 |
# File 'lib/google/apis/language_v1/classes.rb', line 1799 def false_positive_rate_at1 @false_positive_rate_at1 end |
#position_threshold ⇒ Fixnum
Metrics are computed with an assumption that the model always returns at most
this many predictions (ordered by their score, descendingly), but they all
still need to meet the confidence_threshold.
Corresponds to the JSON property positionThreshold
1806 1807 1808 |
# File 'lib/google/apis/language_v1/classes.rb', line 1806 def position_threshold @position_threshold end |
#precision ⇒ Float
Precision for the given confidence threshold.
Corresponds to the JSON property precision
1811 1812 1813 |
# File 'lib/google/apis/language_v1/classes.rb', line 1811 def precision @precision end |
#precision_at1 ⇒ Float
The precision when only considering the label that has the highest prediction
score and not below the confidence threshold for each example.
Corresponds to the JSON property precisionAt1
1817 1818 1819 |
# File 'lib/google/apis/language_v1/classes.rb', line 1817 def precision_at1 @precision_at1 end |
#recall ⇒ Float
Recall (true positive rate) for the given confidence threshold.
Corresponds to the JSON property recall
1822 1823 1824 |
# File 'lib/google/apis/language_v1/classes.rb', line 1822 def recall @recall end |
#recall_at1 ⇒ Float
The recall (true positive rate) when only considering the label that has the
highest prediction score and not below the confidence threshold for each
example.
Corresponds to the JSON property recallAt1
1829 1830 1831 |
# File 'lib/google/apis/language_v1/classes.rb', line 1829 def recall_at1 @recall_at1 end |
#true_negative_count ⇒ Fixnum
The number of labels that were not created by the model, but if they would,
they would not match a ground truth label.
Corresponds to the JSON property trueNegativeCount
1835 1836 1837 |
# File 'lib/google/apis/language_v1/classes.rb', line 1835 def true_negative_count @true_negative_count end |
#true_positive_count ⇒ Fixnum
The number of model created labels that match a ground truth label.
Corresponds to the JSON property truePositiveCount
1840 1841 1842 |
# File 'lib/google/apis/language_v1/classes.rb', line 1840 def true_positive_count @true_positive_count end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 |
# File 'lib/google/apis/language_v1/classes.rb', line 1847 def update!(**args) @confidence_threshold = args[:confidence_threshold] if args.key?(:confidence_threshold) @f1_score = args[:f1_score] if args.key?(:f1_score) @f1_score_at1 = args[:f1_score_at1] if args.key?(:f1_score_at1) @false_negative_count = args[:false_negative_count] if args.key?(:false_negative_count) @false_positive_count = args[:false_positive_count] if args.key?(:false_positive_count) @false_positive_rate = args[:false_positive_rate] if args.key?(:false_positive_rate) @false_positive_rate_at1 = args[:false_positive_rate_at1] if args.key?(:false_positive_rate_at1) @position_threshold = args[:position_threshold] if args.key?(:position_threshold) @precision = args[:precision] if args.key?(:precision) @precision_at1 = args[:precision_at1] if args.key?(:precision_at1) @recall = args[:recall] if args.key?(:recall) @recall_at1 = args[:recall_at1] if args.key?(:recall_at1) @true_negative_count = args[:true_negative_count] if args.key?(:true_negative_count) @true_positive_count = args[:true_positive_count] if args.key?(:true_positive_count) end |