Class: Google::Apis::LanguageV2::XpsConfidenceMetricsEntry
- Inherits:
-
Object
- Object
- Google::Apis::LanguageV2::XpsConfidenceMetricsEntry
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/language_v2/classes.rb,
lib/google/apis/language_v2/representations.rb,
lib/google/apis/language_v2/representations.rb
Overview
ConfidenceMetricsEntry includes generic precision, recall, f1 score etc. Next tag: 16.
Instance Attribute Summary collapse
-
#confidence_threshold ⇒ Float
Metrics are computed with an assumption that the model never return predictions with score lower than this value.
-
#f1_score ⇒ Float
The harmonic mean of recall and precision.
-
#f1_score_at1 ⇒ Float
The harmonic mean of recall_at1 and precision_at1.
-
#false_negative_count ⇒ Fixnum
The number of ground truth labels that are not matched by a model created label.
-
#false_positive_count ⇒ Fixnum
The number of model created labels that do not match a ground truth label.
-
#false_positive_rate ⇒ Float
False Positive Rate for the given confidence threshold.
-
#false_positive_rate_at1 ⇒ Float
The False Positive Rate when only considering the label that has the highest prediction score and not below the confidence threshold for each example.
-
#position_threshold ⇒ Fixnum
Metrics are computed with an assumption that the model always returns at most this many predictions (ordered by their score, descendingly), but they all still need to meet the confidence_threshold.
-
#precision ⇒ Float
Precision for the given confidence threshold.
-
#precision_at1 ⇒ Float
The precision when only considering the label that has the highest prediction score and not below the confidence threshold for each example.
-
#recall ⇒ Float
Recall (true positive rate) for the given confidence threshold.
-
#recall_at1 ⇒ Float
The recall (true positive rate) when only considering the label that has the highest prediction score and not below the confidence threshold for each example.
-
#true_negative_count ⇒ Fixnum
The number of labels that were not created by the model, but if they would, they would not match a ground truth label.
-
#true_positive_count ⇒ Fixnum
The number of model created labels that match a ground truth label.
Instance Method Summary collapse
-
#initialize(**args) ⇒ XpsConfidenceMetricsEntry
constructor
A new instance of XpsConfidenceMetricsEntry.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ XpsConfidenceMetricsEntry
Returns a new instance of XpsConfidenceMetricsEntry.
1542 1543 1544 |
# File 'lib/google/apis/language_v2/classes.rb', line 1542 def initialize(**args) update!(**args) end |
Instance Attribute Details
#confidence_threshold ⇒ Float
Metrics are computed with an assumption that the model never return
predictions with score lower than this value.
Corresponds to the JSON property confidenceThreshold
1467 1468 1469 |
# File 'lib/google/apis/language_v2/classes.rb', line 1467 def confidence_threshold @confidence_threshold end |
#f1_score ⇒ Float
The harmonic mean of recall and precision.
Corresponds to the JSON property f1Score
1472 1473 1474 |
# File 'lib/google/apis/language_v2/classes.rb', line 1472 def f1_score @f1_score end |
#f1_score_at1 ⇒ Float
The harmonic mean of recall_at1 and precision_at1.
Corresponds to the JSON property f1ScoreAt1
1477 1478 1479 |
# File 'lib/google/apis/language_v2/classes.rb', line 1477 def f1_score_at1 @f1_score_at1 end |
#false_negative_count ⇒ Fixnum
The number of ground truth labels that are not matched by a model created
label.
Corresponds to the JSON property falseNegativeCount
1483 1484 1485 |
# File 'lib/google/apis/language_v2/classes.rb', line 1483 def false_negative_count @false_negative_count end |
#false_positive_count ⇒ Fixnum
The number of model created labels that do not match a ground truth label.
Corresponds to the JSON property falsePositiveCount
1488 1489 1490 |
# File 'lib/google/apis/language_v2/classes.rb', line 1488 def false_positive_count @false_positive_count end |
#false_positive_rate ⇒ Float
False Positive Rate for the given confidence threshold.
Corresponds to the JSON property falsePositiveRate
1493 1494 1495 |
# File 'lib/google/apis/language_v2/classes.rb', line 1493 def false_positive_rate @false_positive_rate end |
#false_positive_rate_at1 ⇒ Float
The False Positive Rate when only considering the label that has the highest
prediction score and not below the confidence threshold for each example.
Corresponds to the JSON property falsePositiveRateAt1
1499 1500 1501 |
# File 'lib/google/apis/language_v2/classes.rb', line 1499 def false_positive_rate_at1 @false_positive_rate_at1 end |
#position_threshold ⇒ Fixnum
Metrics are computed with an assumption that the model always returns at most
this many predictions (ordered by their score, descendingly), but they all
still need to meet the confidence_threshold.
Corresponds to the JSON property positionThreshold
1506 1507 1508 |
# File 'lib/google/apis/language_v2/classes.rb', line 1506 def position_threshold @position_threshold end |
#precision ⇒ Float
Precision for the given confidence threshold.
Corresponds to the JSON property precision
1511 1512 1513 |
# File 'lib/google/apis/language_v2/classes.rb', line 1511 def precision @precision end |
#precision_at1 ⇒ Float
The precision when only considering the label that has the highest prediction
score and not below the confidence threshold for each example.
Corresponds to the JSON property precisionAt1
1517 1518 1519 |
# File 'lib/google/apis/language_v2/classes.rb', line 1517 def precision_at1 @precision_at1 end |
#recall ⇒ Float
Recall (true positive rate) for the given confidence threshold.
Corresponds to the JSON property recall
1522 1523 1524 |
# File 'lib/google/apis/language_v2/classes.rb', line 1522 def recall @recall end |
#recall_at1 ⇒ Float
The recall (true positive rate) when only considering the label that has the
highest prediction score and not below the confidence threshold for each
example.
Corresponds to the JSON property recallAt1
1529 1530 1531 |
# File 'lib/google/apis/language_v2/classes.rb', line 1529 def recall_at1 @recall_at1 end |
#true_negative_count ⇒ Fixnum
The number of labels that were not created by the model, but if they would,
they would not match a ground truth label.
Corresponds to the JSON property trueNegativeCount
1535 1536 1537 |
# File 'lib/google/apis/language_v2/classes.rb', line 1535 def true_negative_count @true_negative_count end |
#true_positive_count ⇒ Fixnum
The number of model created labels that match a ground truth label.
Corresponds to the JSON property truePositiveCount
1540 1541 1542 |
# File 'lib/google/apis/language_v2/classes.rb', line 1540 def true_positive_count @true_positive_count end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 |
# File 'lib/google/apis/language_v2/classes.rb', line 1547 def update!(**args) @confidence_threshold = args[:confidence_threshold] if args.key?(:confidence_threshold) @f1_score = args[:f1_score] if args.key?(:f1_score) @f1_score_at1 = args[:f1_score_at1] if args.key?(:f1_score_at1) @false_negative_count = args[:false_negative_count] if args.key?(:false_negative_count) @false_positive_count = args[:false_positive_count] if args.key?(:false_positive_count) @false_positive_rate = args[:false_positive_rate] if args.key?(:false_positive_rate) @false_positive_rate_at1 = args[:false_positive_rate_at1] if args.key?(:false_positive_rate_at1) @position_threshold = args[:position_threshold] if args.key?(:position_threshold) @precision = args[:precision] if args.key?(:precision) @precision_at1 = args[:precision_at1] if args.key?(:precision_at1) @recall = args[:recall] if args.key?(:recall) @recall_at1 = args[:recall_at1] if args.key?(:recall_at1) @true_negative_count = args[:true_negative_count] if args.key?(:true_negative_count) @true_positive_count = args[:true_positive_count] if args.key?(:true_positive_count) end |