Class: Google::Apis::LanguageV2::XpsConfidenceMetricsEntry
- Inherits:
-
Object
- Object
- Google::Apis::LanguageV2::XpsConfidenceMetricsEntry
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/language_v2/classes.rb,
lib/google/apis/language_v2/representations.rb,
lib/google/apis/language_v2/representations.rb
Overview
ConfidenceMetricsEntry includes generic precision, recall, f1 score etc. Next tag: 16.
Instance Attribute Summary collapse
-
#confidence_threshold ⇒ Float
Metrics are computed with an assumption that the model never return predictions with score lower than this value.
-
#f1_score ⇒ Float
The harmonic mean of recall and precision.
-
#f1_score_at1 ⇒ Float
The harmonic mean of recall_at1 and precision_at1.
-
#false_negative_count ⇒ Fixnum
The number of ground truth labels that are not matched by a model created label.
-
#false_positive_count ⇒ Fixnum
The number of model created labels that do not match a ground truth label.
-
#false_positive_rate ⇒ Float
False Positive Rate for the given confidence threshold.
-
#false_positive_rate_at1 ⇒ Float
The False Positive Rate when only considering the label that has the highest prediction score and not below the confidence threshold for each example.
-
#position_threshold ⇒ Fixnum
Metrics are computed with an assumption that the model always returns at most this many predictions (ordered by their score, descendingly), but they all still need to meet the confidence_threshold.
-
#precision ⇒ Float
Precision for the given confidence threshold.
-
#precision_at1 ⇒ Float
The precision when only considering the label that has the highest prediction score and not below the confidence threshold for each example.
-
#recall ⇒ Float
Recall (true positive rate) for the given confidence threshold.
-
#recall_at1 ⇒ Float
The recall (true positive rate) when only considering the label that has the highest prediction score and not below the confidence threshold for each example.
-
#true_negative_count ⇒ Fixnum
The number of labels that were not created by the model, but if they would, they would not match a ground truth label.
-
#true_positive_count ⇒ Fixnum
The number of model created labels that match a ground truth label.
Instance Method Summary collapse
-
#initialize(**args) ⇒ XpsConfidenceMetricsEntry
constructor
A new instance of XpsConfidenceMetricsEntry.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ XpsConfidenceMetricsEntry
Returns a new instance of XpsConfidenceMetricsEntry.
1556 1557 1558 |
# File 'lib/google/apis/language_v2/classes.rb', line 1556 def initialize(**args) update!(**args) end |
Instance Attribute Details
#confidence_threshold ⇒ Float
Metrics are computed with an assumption that the model never return
predictions with score lower than this value.
Corresponds to the JSON property confidenceThreshold
1481 1482 1483 |
# File 'lib/google/apis/language_v2/classes.rb', line 1481 def confidence_threshold @confidence_threshold end |
#f1_score ⇒ Float
The harmonic mean of recall and precision.
Corresponds to the JSON property f1Score
1486 1487 1488 |
# File 'lib/google/apis/language_v2/classes.rb', line 1486 def f1_score @f1_score end |
#f1_score_at1 ⇒ Float
The harmonic mean of recall_at1 and precision_at1.
Corresponds to the JSON property f1ScoreAt1
1491 1492 1493 |
# File 'lib/google/apis/language_v2/classes.rb', line 1491 def f1_score_at1 @f1_score_at1 end |
#false_negative_count ⇒ Fixnum
The number of ground truth labels that are not matched by a model created
label.
Corresponds to the JSON property falseNegativeCount
1497 1498 1499 |
# File 'lib/google/apis/language_v2/classes.rb', line 1497 def false_negative_count @false_negative_count end |
#false_positive_count ⇒ Fixnum
The number of model created labels that do not match a ground truth label.
Corresponds to the JSON property falsePositiveCount
1502 1503 1504 |
# File 'lib/google/apis/language_v2/classes.rb', line 1502 def false_positive_count @false_positive_count end |
#false_positive_rate ⇒ Float
False Positive Rate for the given confidence threshold.
Corresponds to the JSON property falsePositiveRate
1507 1508 1509 |
# File 'lib/google/apis/language_v2/classes.rb', line 1507 def false_positive_rate @false_positive_rate end |
#false_positive_rate_at1 ⇒ Float
The False Positive Rate when only considering the label that has the highest
prediction score and not below the confidence threshold for each example.
Corresponds to the JSON property falsePositiveRateAt1
1513 1514 1515 |
# File 'lib/google/apis/language_v2/classes.rb', line 1513 def false_positive_rate_at1 @false_positive_rate_at1 end |
#position_threshold ⇒ Fixnum
Metrics are computed with an assumption that the model always returns at most
this many predictions (ordered by their score, descendingly), but they all
still need to meet the confidence_threshold.
Corresponds to the JSON property positionThreshold
1520 1521 1522 |
# File 'lib/google/apis/language_v2/classes.rb', line 1520 def position_threshold @position_threshold end |
#precision ⇒ Float
Precision for the given confidence threshold.
Corresponds to the JSON property precision
1525 1526 1527 |
# File 'lib/google/apis/language_v2/classes.rb', line 1525 def precision @precision end |
#precision_at1 ⇒ Float
The precision when only considering the label that has the highest prediction
score and not below the confidence threshold for each example.
Corresponds to the JSON property precisionAt1
1531 1532 1533 |
# File 'lib/google/apis/language_v2/classes.rb', line 1531 def precision_at1 @precision_at1 end |
#recall ⇒ Float
Recall (true positive rate) for the given confidence threshold.
Corresponds to the JSON property recall
1536 1537 1538 |
# File 'lib/google/apis/language_v2/classes.rb', line 1536 def recall @recall end |
#recall_at1 ⇒ Float
The recall (true positive rate) when only considering the label that has the
highest prediction score and not below the confidence threshold for each
example.
Corresponds to the JSON property recallAt1
1543 1544 1545 |
# File 'lib/google/apis/language_v2/classes.rb', line 1543 def recall_at1 @recall_at1 end |
#true_negative_count ⇒ Fixnum
The number of labels that were not created by the model, but if they would,
they would not match a ground truth label.
Corresponds to the JSON property trueNegativeCount
1549 1550 1551 |
# File 'lib/google/apis/language_v2/classes.rb', line 1549 def true_negative_count @true_negative_count end |
#true_positive_count ⇒ Fixnum
The number of model created labels that match a ground truth label.
Corresponds to the JSON property truePositiveCount
1554 1555 1556 |
# File 'lib/google/apis/language_v2/classes.rb', line 1554 def true_positive_count @true_positive_count end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 |
# File 'lib/google/apis/language_v2/classes.rb', line 1561 def update!(**args) @confidence_threshold = args[:confidence_threshold] if args.key?(:confidence_threshold) @f1_score = args[:f1_score] if args.key?(:f1_score) @f1_score_at1 = args[:f1_score_at1] if args.key?(:f1_score_at1) @false_negative_count = args[:false_negative_count] if args.key?(:false_negative_count) @false_positive_count = args[:false_positive_count] if args.key?(:false_positive_count) @false_positive_rate = args[:false_positive_rate] if args.key?(:false_positive_rate) @false_positive_rate_at1 = args[:false_positive_rate_at1] if args.key?(:false_positive_rate_at1) @position_threshold = args[:position_threshold] if args.key?(:position_threshold) @precision = args[:precision] if args.key?(:precision) @precision_at1 = args[:precision_at1] if args.key?(:precision_at1) @recall = args[:recall] if args.key?(:recall) @recall_at1 = args[:recall_at1] if args.key?(:recall_at1) @true_negative_count = args[:true_negative_count] if args.key?(:true_negative_count) @true_positive_count = args[:true_positive_count] if args.key?(:true_positive_count) end |