Class: Google::Apis::MlV1::GoogleCloudMlV1HyperparameterSpec

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/ml_v1/classes.rb,
lib/google/apis/ml_v1/representations.rb,
lib/google/apis/ml_v1/representations.rb

Overview

Represents a set of hyperparameters to optimize.

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudMlV1HyperparameterSpec

Returns a new instance of GoogleCloudMlV1HyperparameterSpec.



1310
1311
1312
# File 'lib/google/apis/ml_v1/classes.rb', line 1310

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#algorithmString

Optional. The search algorithm specified for the hyperparameter tuning job. Uses the default AI Platform hyperparameter tuning algorithm if unspecified. Corresponds to the JSON property algorithm

Returns:

  • (String)


1249
1250
1251
# File 'lib/google/apis/ml_v1/classes.rb', line 1249

def algorithm
  @algorithm
end

#enable_trial_early_stoppingBoolean Also known as: enable_trial_early_stopping?

Optional. Indicates if the hyperparameter tuning job enables auto trial early stopping. Corresponds to the JSON property enableTrialEarlyStopping

Returns:

  • (Boolean)


1255
1256
1257
# File 'lib/google/apis/ml_v1/classes.rb', line 1255

def enable_trial_early_stopping
  @enable_trial_early_stopping
end

#goalString

Required. The type of goal to use for tuning. Available types are MAXIMIZE and MINIMIZE. Defaults to MAXIMIZE. Corresponds to the JSON property goal

Returns:

  • (String)


1262
1263
1264
# File 'lib/google/apis/ml_v1/classes.rb', line 1262

def goal
  @goal
end

#hyperparameter_metric_tagString

Optional. The TensorFlow summary tag name to use for optimizing trials. For current versions of TensorFlow, this tag name should exactly match what is shown in TensorBoard, including all scopes. For versions of TensorFlow prior to 0.12, this should be only the tag passed to tf.Summary. By default, " training/hptuning/metric" will be used. Corresponds to the JSON property hyperparameterMetricTag

Returns:

  • (String)


1271
1272
1273
# File 'lib/google/apis/ml_v1/classes.rb', line 1271

def hyperparameter_metric_tag
  @hyperparameter_metric_tag
end

#max_failed_trialsFixnum

Optional. The number of failed trials that need to be seen before failing the hyperparameter tuning job. You can specify this field to override the default failing criteria for AI Platform hyperparameter tuning jobs. Defaults to zero, which means the service decides when a hyperparameter job should fail. Corresponds to the JSON property maxFailedTrials

Returns:

  • (Fixnum)


1279
1280
1281
# File 'lib/google/apis/ml_v1/classes.rb', line 1279

def max_failed_trials
  @max_failed_trials
end

#max_parallel_trialsFixnum

Optional. The number of training trials to run concurrently. You can reduce the time it takes to perform hyperparameter tuning by adding trials in parallel. However, each trail only benefits from the information gained in completed trials. That means that a trial does not get access to the results of trials running at the same time, which could reduce the quality of the overall optimization. Each trial will use the same scale tier and machine types. Defaults to one. Corresponds to the JSON property maxParallelTrials

Returns:

  • (Fixnum)


1290
1291
1292
# File 'lib/google/apis/ml_v1/classes.rb', line 1290

def max_parallel_trials
  @max_parallel_trials
end

#max_trialsFixnum

Optional. How many training trials should be attempted to optimize the specified hyperparameters. Defaults to one. Corresponds to the JSON property maxTrials

Returns:

  • (Fixnum)


1296
1297
1298
# File 'lib/google/apis/ml_v1/classes.rb', line 1296

def max_trials
  @max_trials
end

#paramsArray<Google::Apis::MlV1::GoogleCloudMlV1ParameterSpec>

Required. The set of parameters to tune. Corresponds to the JSON property params



1301
1302
1303
# File 'lib/google/apis/ml_v1/classes.rb', line 1301

def params
  @params
end

#resume_previous_job_idString

Optional. The prior hyperparameter tuning job id that users hope to continue with. The job id will be used to find the corresponding vizier study guid and resume the study. Corresponds to the JSON property resumePreviousJobId

Returns:

  • (String)


1308
1309
1310
# File 'lib/google/apis/ml_v1/classes.rb', line 1308

def resume_previous_job_id
  @resume_previous_job_id
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
# File 'lib/google/apis/ml_v1/classes.rb', line 1315

def update!(**args)
  @algorithm = args[:algorithm] if args.key?(:algorithm)
  @enable_trial_early_stopping = args[:enable_trial_early_stopping] if args.key?(:enable_trial_early_stopping)
  @goal = args[:goal] if args.key?(:goal)
  @hyperparameter_metric_tag = args[:hyperparameter_metric_tag] if args.key?(:hyperparameter_metric_tag)
  @max_failed_trials = args[:max_failed_trials] if args.key?(:max_failed_trials)
  @max_parallel_trials = args[:max_parallel_trials] if args.key?(:max_parallel_trials)
  @max_trials = args[:max_trials] if args.key?(:max_trials)
  @params = args[:params] if args.key?(:params)
  @resume_previous_job_id = args[:resume_previous_job_id] if args.key?(:resume_previous_job_id)
end