Class: Google::Apis::NotebooksV1::ExecutionTemplate
- Inherits:
-
Object
- Object
- Google::Apis::NotebooksV1::ExecutionTemplate
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/notebooks_v1/classes.rb,
lib/google/apis/notebooks_v1/representations.rb,
lib/google/apis/notebooks_v1/representations.rb
Overview
The description a notebook execution workload.
Instance Attribute Summary collapse
-
#accelerator_config ⇒ Google::Apis::NotebooksV1::SchedulerAcceleratorConfig
Definition of a hardware accelerator.
-
#container_image_uri ⇒ String
Container Image URI to a DLVM Example: 'gcr.io/deeplearning-platform-release/ base-cu100' More examples can be found at: https://cloud.google.com/ai- platform/deep-learning-containers/docs/choosing-container Corresponds to the JSON property
containerImageUri. -
#dataproc_parameters ⇒ Google::Apis::NotebooksV1::DataprocParameters
Parameters used in Dataproc JobType executions.
-
#input_notebook_file ⇒ String
Path to the notebook file to execute.
-
#job_type ⇒ String
The type of Job to be used on this execution.
-
#kernel_spec ⇒ String
Name of the kernel spec to use.
-
#labels ⇒ Hash<String,String>
Labels for execution.
-
#master_type ⇒ String
Specifies the type of virtual machine to use for your training job's master worker.
-
#output_notebook_folder ⇒ String
Path to the notebook folder to write to.
-
#parameters ⇒ String
Parameters used within the 'input_notebook_file' notebook.
-
#params_yaml_file ⇒ String
Parameters to be overridden in the notebook during execution.
-
#scale_tier ⇒ String
Required.
-
#service_account ⇒ String
The email address of a service account to use when running the execution.
-
#tensorboard ⇒ String
The name of a Vertex AI [Tensorboard] resource to which this execution will upload Tensorboard logs.
-
#vertex_ai_parameters ⇒ Google::Apis::NotebooksV1::VertexAiParameters
Parameters used in Vertex AI JobType executions.
Instance Method Summary collapse
-
#initialize(**args) ⇒ ExecutionTemplate
constructor
A new instance of ExecutionTemplate.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ ExecutionTemplate
Returns a new instance of ExecutionTemplate.
619 620 621 |
# File 'lib/google/apis/notebooks_v1/classes.rb', line 619 def initialize(**args) update!(**args) end |
Instance Attribute Details
#accelerator_config ⇒ Google::Apis::NotebooksV1::SchedulerAcceleratorConfig
Definition of a hardware accelerator. Note that not all combinations of type
and core_count are valid. Check GPUs on Compute Engine to find a valid combination. TPUs are not
supported.
Corresponds to the JSON property acceleratorConfig
514 515 516 |
# File 'lib/google/apis/notebooks_v1/classes.rb', line 514 def accelerator_config @accelerator_config end |
#container_image_uri ⇒ String
Container Image URI to a DLVM Example: 'gcr.io/deeplearning-platform-release/
base-cu100' More examples can be found at: https://cloud.google.com/ai-
platform/deep-learning-containers/docs/choosing-container
Corresponds to the JSON property containerImageUri
521 522 523 |
# File 'lib/google/apis/notebooks_v1/classes.rb', line 521 def container_image_uri @container_image_uri end |
#dataproc_parameters ⇒ Google::Apis::NotebooksV1::DataprocParameters
Parameters used in Dataproc JobType executions.
Corresponds to the JSON property dataprocParameters
526 527 528 |
# File 'lib/google/apis/notebooks_v1/classes.rb', line 526 def dataproc_parameters @dataproc_parameters end |
#input_notebook_file ⇒ String
Path to the notebook file to execute. Must be in a Google Cloud Storage bucket.
Format: gs://bucket_name/folder/notebook_file_name`Ex:gs://
notebook_user/scheduled_notebooks/sentiment_notebook.ipynb
Corresponds to the JSON propertyinputNotebookFile`
533 534 535 |
# File 'lib/google/apis/notebooks_v1/classes.rb', line 533 def input_notebook_file @input_notebook_file end |
#job_type ⇒ String
The type of Job to be used on this execution.
Corresponds to the JSON property jobType
538 539 540 |
# File 'lib/google/apis/notebooks_v1/classes.rb', line 538 def job_type @job_type end |
#kernel_spec ⇒ String
Name of the kernel spec to use. This must be specified if the kernel spec name
on the execution target does not match the name in the input notebook file.
Corresponds to the JSON property kernelSpec
544 545 546 |
# File 'lib/google/apis/notebooks_v1/classes.rb', line 544 def kernel_spec @kernel_spec end |
#labels ⇒ Hash<String,String>
Labels for execution. If execution is scheduled, a field included will be 'nbs-
scheduled'. Otherwise, it is an immediate execution, and an included field
will be 'nbs-immediate'. Use fields to efficiently index between various types
of executions.
Corresponds to the JSON property labels
552 553 554 |
# File 'lib/google/apis/notebooks_v1/classes.rb', line 552 def labels @labels end |
#master_type ⇒ String
Specifies the type of virtual machine to use for your training job's master
worker. You must specify this field when scaleTier is set to CUSTOM. You
can use certain Compute Engine machine types directly in this field. The
following types are supported: - n1-standard-4 - n1-standard-8 - n1-
standard-16 - n1-standard-32 - n1-standard-64 - n1-standard-96 - n1-
highmem-2 - n1-highmem-4 - n1-highmem-8 - n1-highmem-16 - n1-highmem-
32 - n1-highmem-64 - n1-highmem-96 - n1-highcpu-16 - n1-highcpu-32 -
n1-highcpu-64 - n1-highcpu-96 Alternatively, you can use the following
legacy machine types: - standard - large_model - complex_model_s -
complex_model_m - complex_model_l - standard_gpu - complex_model_m_gpu -
complex_model_l_gpu - standard_p100 - complex_model_m_p100 -
standard_v100 - large_model_v100 - complex_model_m_v100 -
complex_model_l_v100 Finally, if you want to use a TPU for training, specify
cloud_tpu in this field. Learn more about the special configuration options
for training with TPU.
Corresponds to the JSON property masterType
572 573 574 |
# File 'lib/google/apis/notebooks_v1/classes.rb', line 572 def master_type @master_type end |
#output_notebook_folder ⇒ String
Path to the notebook folder to write to. Must be in a Google Cloud Storage
bucket path. Format: gs://bucket_name/folder`Ex:gs://notebook_user/
scheduled_notebooks
Corresponds to the JSON propertyoutputNotebookFolder`
579 580 581 |
# File 'lib/google/apis/notebooks_v1/classes.rb', line 579 def output_notebook_folder @output_notebook_folder end |
#parameters ⇒ String
Parameters used within the 'input_notebook_file' notebook.
Corresponds to the JSON property parameters
584 585 586 |
# File 'lib/google/apis/notebooks_v1/classes.rb', line 584 def parameters @parameters end |
#params_yaml_file ⇒ String
Parameters to be overridden in the notebook during execution. Ref https://
papermill.readthedocs.io/en/latest/usage-parameterize.html on how to
specifying parameters in the input notebook and pass them here in an YAML file.
Ex: gs://notebook_user/scheduled_notebooks/sentiment_notebook_params.yaml
Corresponds to the JSON property paramsYamlFile
592 593 594 |
# File 'lib/google/apis/notebooks_v1/classes.rb', line 592 def params_yaml_file @params_yaml_file end |
#scale_tier ⇒ String
Required. Scale tier of the hardware used for notebook execution. DEPRECATED
Will be discontinued. As right now only CUSTOM is supported.
Corresponds to the JSON property scaleTier
598 599 600 |
# File 'lib/google/apis/notebooks_v1/classes.rb', line 598 def scale_tier @scale_tier end |
#service_account ⇒ String
The email address of a service account to use when running the execution. You
must have the iam.serviceAccounts.actAs permission for the specified service
account.
Corresponds to the JSON property serviceAccount
605 606 607 |
# File 'lib/google/apis/notebooks_v1/classes.rb', line 605 def service_account @service_account end |
#tensorboard ⇒ String
The name of a Vertex AI [Tensorboard] resource to which this execution will
upload Tensorboard logs. Format: projects/project/locations/location/
tensorboards/tensorboard`
Corresponds to the JSON propertytensorboard`
612 613 614 |
# File 'lib/google/apis/notebooks_v1/classes.rb', line 612 def tensorboard @tensorboard end |
#vertex_ai_parameters ⇒ Google::Apis::NotebooksV1::VertexAiParameters
Parameters used in Vertex AI JobType executions.
Corresponds to the JSON property vertexAiParameters
617 618 619 |
# File 'lib/google/apis/notebooks_v1/classes.rb', line 617 def vertex_ai_parameters @vertex_ai_parameters end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 |
# File 'lib/google/apis/notebooks_v1/classes.rb', line 624 def update!(**args) @accelerator_config = args[:accelerator_config] if args.key?(:accelerator_config) @container_image_uri = args[:container_image_uri] if args.key?(:container_image_uri) @dataproc_parameters = args[:dataproc_parameters] if args.key?(:dataproc_parameters) @input_notebook_file = args[:input_notebook_file] if args.key?(:input_notebook_file) @job_type = args[:job_type] if args.key?(:job_type) @kernel_spec = args[:kernel_spec] if args.key?(:kernel_spec) @labels = args[:labels] if args.key?(:labels) @master_type = args[:master_type] if args.key?(:master_type) @output_notebook_folder = args[:output_notebook_folder] if args.key?(:output_notebook_folder) @parameters = args[:parameters] if args.key?(:parameters) @params_yaml_file = args[:params_yaml_file] if args.key?(:params_yaml_file) @scale_tier = args[:scale_tier] if args.key?(:scale_tier) @service_account = args[:service_account] if args.key?(:service_account) @tensorboard = args[:tensorboard] if args.key?(:tensorboard) @vertex_ai_parameters = args[:vertex_ai_parameters] if args.key?(:vertex_ai_parameters) end |