Class: Google::Apis::PrivatecaV1beta1::GoogleApiServicecontrolV1Distribution
- Inherits:
-
Object
- Object
- Google::Apis::PrivatecaV1beta1::GoogleApiServicecontrolV1Distribution
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/privateca_v1beta1/classes.rb,
lib/google/apis/privateca_v1beta1/representations.rb,
lib/google/apis/privateca_v1beta1/representations.rb
Overview
Distribution represents a frequency distribution of double-valued sample points. It contains the size of the population of sample points plus additional optional information: - the arithmetic mean of the samples - the minimum and maximum of the samples - the sum-squared-deviation of the samples, used to compute variance - a histogram of the values of the sample points
Instance Attribute Summary collapse
-
#bucket_counts ⇒ Array<Fixnum>
The number of samples in each histogram bucket.
-
#count ⇒ Fixnum
The total number of samples in the distribution.
-
#exemplars ⇒ Array<Google::Apis::PrivatecaV1beta1::Exemplar>
Example points.
-
#explicit_buckets ⇒ Google::Apis::PrivatecaV1beta1::GoogleApiServicecontrolV1ExplicitBuckets
Describing buckets with arbitrary user-provided width.
-
#exponential_buckets ⇒ Google::Apis::PrivatecaV1beta1::GoogleApiServicecontrolV1ExponentialBuckets
Describing buckets with exponentially growing width.
-
#linear_buckets ⇒ Google::Apis::PrivatecaV1beta1::GoogleApiServicecontrolV1LinearBuckets
Describing buckets with constant width.
-
#maximum ⇒ Float
The maximum of the population of values.
-
#mean ⇒ Float
The arithmetic mean of the samples in the distribution.
-
#minimum ⇒ Float
The minimum of the population of values.
-
#sum_of_squared_deviation ⇒ Float
The sum of squared deviations from the mean: Sumi=1..count where each x_i is a sample values.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleApiServicecontrolV1Distribution
constructor
A new instance of GoogleApiServicecontrolV1Distribution.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GoogleApiServicecontrolV1Distribution
Returns a new instance of GoogleApiServicecontrolV1Distribution.
1250 1251 1252 |
# File 'lib/google/apis/privateca_v1beta1/classes.rb', line 1250 def initialize(**args) update!(**args) end |
Instance Attribute Details
#bucket_counts ⇒ Array<Fixnum>
The number of samples in each histogram bucket. bucket_counts
are optional.
If present, they must sum to the count
value. The buckets are defined below
in bucket_option
. There are N buckets. bucket_counts[0]
is the number of
samples in the underflow bucket. bucket_counts[1]
to bucket_counts[N-1]
are the numbers of samples in each of the finite buckets. And bucket_counts[N]
is the number of samples in the overflow bucket. See the comments of
bucket_optionbelow for more details. Any suffix of trailing zeros may be
omitted.
Corresponds to the JSON property
bucketCounts`
1200 1201 1202 |
# File 'lib/google/apis/privateca_v1beta1/classes.rb', line 1200 def bucket_counts @bucket_counts end |
#count ⇒ Fixnum
The total number of samples in the distribution. Must be >= 0.
Corresponds to the JSON property count
1205 1206 1207 |
# File 'lib/google/apis/privateca_v1beta1/classes.rb', line 1205 def count @count end |
#exemplars ⇒ Array<Google::Apis::PrivatecaV1beta1::Exemplar>
Example points. Must be in increasing order of value
field.
Corresponds to the JSON property exemplars
1210 1211 1212 |
# File 'lib/google/apis/privateca_v1beta1/classes.rb', line 1210 def exemplars @exemplars end |
#explicit_buckets ⇒ Google::Apis::PrivatecaV1beta1::GoogleApiServicecontrolV1ExplicitBuckets
Describing buckets with arbitrary user-provided width.
Corresponds to the JSON property explicitBuckets
1215 1216 1217 |
# File 'lib/google/apis/privateca_v1beta1/classes.rb', line 1215 def explicit_buckets @explicit_buckets end |
#exponential_buckets ⇒ Google::Apis::PrivatecaV1beta1::GoogleApiServicecontrolV1ExponentialBuckets
Describing buckets with exponentially growing width.
Corresponds to the JSON property exponentialBuckets
1220 1221 1222 |
# File 'lib/google/apis/privateca_v1beta1/classes.rb', line 1220 def exponential_buckets @exponential_buckets end |
#linear_buckets ⇒ Google::Apis::PrivatecaV1beta1::GoogleApiServicecontrolV1LinearBuckets
Describing buckets with constant width.
Corresponds to the JSON property linearBuckets
1225 1226 1227 |
# File 'lib/google/apis/privateca_v1beta1/classes.rb', line 1225 def linear_buckets @linear_buckets end |
#maximum ⇒ Float
The maximum of the population of values. Ignored if count
is zero.
Corresponds to the JSON property maximum
1230 1231 1232 |
# File 'lib/google/apis/privateca_v1beta1/classes.rb', line 1230 def maximum @maximum end |
#mean ⇒ Float
The arithmetic mean of the samples in the distribution. If count
is zero
then this field must be zero.
Corresponds to the JSON property mean
1236 1237 1238 |
# File 'lib/google/apis/privateca_v1beta1/classes.rb', line 1236 def mean @mean end |
#minimum ⇒ Float
The minimum of the population of values. Ignored if count
is zero.
Corresponds to the JSON property minimum
1241 1242 1243 |
# File 'lib/google/apis/privateca_v1beta1/classes.rb', line 1241 def minimum @minimum end |
#sum_of_squared_deviation ⇒ Float
The sum of squared deviations from the mean: Sumi=1..count
where each x_i is a sample values. If count
is zero then this field must be
zero, otherwise validation of the request fails.
Corresponds to the JSON property sumOfSquaredDeviation
1248 1249 1250 |
# File 'lib/google/apis/privateca_v1beta1/classes.rb', line 1248 def sum_of_squared_deviation @sum_of_squared_deviation end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 |
# File 'lib/google/apis/privateca_v1beta1/classes.rb', line 1255 def update!(**args) @bucket_counts = args[:bucket_counts] if args.key?(:bucket_counts) @count = args[:count] if args.key?(:count) @exemplars = args[:exemplars] if args.key?(:exemplars) @explicit_buckets = args[:explicit_buckets] if args.key?(:explicit_buckets) @exponential_buckets = args[:exponential_buckets] if args.key?(:exponential_buckets) @linear_buckets = args[:linear_buckets] if args.key?(:linear_buckets) @maximum = args[:maximum] if args.key?(:maximum) @mean = args[:mean] if args.key?(:mean) @minimum = args[:minimum] if args.key?(:minimum) @sum_of_squared_deviation = args[:sum_of_squared_deviation] if args.key?(:sum_of_squared_deviation) end |