Class: Google::Cloud::AIPlatform::V1::ExplanationParameters
- Inherits:
-
Object
- Object
- Google::Cloud::AIPlatform::V1::ExplanationParameters
- Extended by:
- Protobuf::MessageExts::ClassMethods
- Includes:
- Protobuf::MessageExts
- Defined in:
- proto_docs/google/cloud/aiplatform/v1/explanation.rb
Overview
Parameters to configure explaining for Model's predictions.
Instance Attribute Summary collapse
-
#examples ⇒ ::Google::Cloud::AIPlatform::V1::Examples
Example-based explanations that returns the nearest neighbors from the provided dataset.
-
#integrated_gradients_attribution ⇒ ::Google::Cloud::AIPlatform::V1::IntegratedGradientsAttribution
An attribution method that computes Aumann-Shapley values taking advantage of the model's fully differentiable structure.
-
#output_indices ⇒ ::Google::Protobuf::ListValue
If populated, only returns attributions that have output_index contained in output_indices.
-
#sampled_shapley_attribution ⇒ ::Google::Cloud::AIPlatform::V1::SampledShapleyAttribution
An attribution method that approximates Shapley values for features that contribute to the label being predicted.
-
#top_k ⇒ ::Integer
If populated, returns attributions for top K indices of outputs (defaults to 1).
-
#xrai_attribution ⇒ ::Google::Cloud::AIPlatform::V1::XraiAttribution
An attribution method that redistributes Integrated Gradients attribution to segmented regions, taking advantage of the model's fully differentiable structure.
Instance Attribute Details
#examples ⇒ ::Google::Cloud::AIPlatform::V1::Examples
Returns Example-based explanations that returns the nearest neighbors from the provided dataset.
280 281 282 283 |
# File 'proto_docs/google/cloud/aiplatform/v1/explanation.rb', line 280 class ExplanationParameters include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end |
#integrated_gradients_attribution ⇒ ::Google::Cloud::AIPlatform::V1::IntegratedGradientsAttribution
Returns An attribution method that computes Aumann-Shapley values taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365.
280 281 282 283 |
# File 'proto_docs/google/cloud/aiplatform/v1/explanation.rb', line 280 class ExplanationParameters include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end |
#output_indices ⇒ ::Google::Protobuf::ListValue
Returns If populated, only returns attributions that have output_index contained in output_indices. It must be an ndarray of integers, with the same shape of the output it's explaining.
If not populated, returns attributions for top_k indices of outputs. If neither top_k nor output_indices is populated, returns the argmax index of the outputs.
Only applicable to Models that predict multiple outputs (e,g, multi-class Models that predict multiple classes).
280 281 282 283 |
# File 'proto_docs/google/cloud/aiplatform/v1/explanation.rb', line 280 class ExplanationParameters include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end |
#sampled_shapley_attribution ⇒ ::Google::Cloud::AIPlatform::V1::SampledShapleyAttribution
Returns An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features. Refer to this paper for model details: https://arxiv.org/abs/1306.4265.
280 281 282 283 |
# File 'proto_docs/google/cloud/aiplatform/v1/explanation.rb', line 280 class ExplanationParameters include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end |
#top_k ⇒ ::Integer
Returns If populated, returns attributions for top K indices of outputs (defaults to 1). Only applies to Models that predicts more than one outputs (e,g, multi-class Models). When set to -1, returns explanations for all outputs.
280 281 282 283 |
# File 'proto_docs/google/cloud/aiplatform/v1/explanation.rb', line 280 class ExplanationParameters include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end |
#xrai_attribution ⇒ ::Google::Cloud::AIPlatform::V1::XraiAttribution
Returns An attribution method that redistributes Integrated Gradients attribution to segmented regions, taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825
XRAI currently performs better on natural images, like a picture of a house or an animal. If the images are taken in artificial environments, like a lab or manufacturing line, or from diagnostic equipment, like x-rays or quality-control cameras, use Integrated Gradients instead.
280 281 282 283 |
# File 'proto_docs/google/cloud/aiplatform/v1/explanation.rb', line 280 class ExplanationParameters include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end |