Class: Google::Cloud::AIPlatform::V1::FeatureStatsAnomaly
- Inherits:
-
Object
- Object
- Google::Cloud::AIPlatform::V1::FeatureStatsAnomaly
- Extended by:
- Protobuf::MessageExts::ClassMethods
- Includes:
- Protobuf::MessageExts
- Defined in:
- proto_docs/google/cloud/aiplatform/v1/feature_monitoring_stats.rb
Overview
Stats and Anomaly generated at specific timestamp for specific Feature. The start_time and end_time are used to define the time range of the dataset that current stats belongs to, e.g. prediction traffic is bucketed into prediction datasets by time window. If the Dataset is not defined by time window, start_time = end_time. Timestamp of the stats and anomalies always refers to end_time. Raw stats and anomalies are stored in stats_uri or anomaly_uri in the tensorflow defined protos. Field data_stats contains almost identical information with the raw stats in Vertex AI defined proto, for UI to display.
Instance Attribute Summary collapse
-
#anomaly_detection_threshold ⇒ ::Float
This is the threshold used when detecting anomalies.
-
#anomaly_uri ⇒ ::String
Path of the anomaly file for current feature values in Cloud Storage bucket.
-
#distribution_deviation ⇒ ::Float
Deviation from the current stats to baseline stats.
-
#end_time ⇒ ::Google::Protobuf::Timestamp
The end timestamp of window where stats were generated.
-
#score ⇒ ::Float
Feature importance score, only populated when cross-feature monitoring is enabled.
-
#start_time ⇒ ::Google::Protobuf::Timestamp
The start timestamp of window where stats were generated.
-
#stats_uri ⇒ ::String
Path of the stats file for current feature values in Cloud Storage bucket.
Instance Attribute Details
#anomaly_detection_threshold ⇒ ::Float
Returns This is the threshold used when detecting anomalies. The threshold can be changed by user, so this one might be different from ThresholdConfig.value.
82 83 84 85 |
# File 'proto_docs/google/cloud/aiplatform/v1/feature_monitoring_stats.rb', line 82 class FeatureStatsAnomaly include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end |
#anomaly_uri ⇒ ::String
Returns Path of the anomaly file for current feature values in Cloud Storage
bucket.
Format: gs://
82 83 84 85 |
# File 'proto_docs/google/cloud/aiplatform/v1/feature_monitoring_stats.rb', line 82 class FeatureStatsAnomaly include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end |
#distribution_deviation ⇒ ::Float
Returns Deviation from the current stats to baseline stats.
- For categorical feature, the distribution distance is calculated by L-inifinity norm.
- For numerical feature, the distribution distance is calculated by Jensen–Shannon divergence.
82 83 84 85 |
# File 'proto_docs/google/cloud/aiplatform/v1/feature_monitoring_stats.rb', line 82 class FeatureStatsAnomaly include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end |
#end_time ⇒ ::Google::Protobuf::Timestamp
Returns The end timestamp of window where stats were generated. For objectives where time window doesn't make sense (e.g. Featurestore Snapshot Monitoring), end_time indicates the timestamp of the data used to generate stats (e.g. timestamp we take snapshots for feature values).
82 83 84 85 |
# File 'proto_docs/google/cloud/aiplatform/v1/feature_monitoring_stats.rb', line 82 class FeatureStatsAnomaly include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end |
#score ⇒ ::Float
Returns Feature importance score, only populated when cross-feature monitoring is enabled. For now only used to represent feature attribution score within range [0, 1] for ModelDeploymentMonitoringObjectiveType.FEATURE_ATTRIBUTION_SKEW and ModelDeploymentMonitoringObjectiveType.FEATURE_ATTRIBUTION_DRIFT.
82 83 84 85 |
# File 'proto_docs/google/cloud/aiplatform/v1/feature_monitoring_stats.rb', line 82 class FeatureStatsAnomaly include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end |
#start_time ⇒ ::Google::Protobuf::Timestamp
Returns The start timestamp of window where stats were generated. For objectives where time window doesn't make sense (e.g. Featurestore Snapshot Monitoring), start_time is only used to indicate the monitoring intervals, so it always equals to (end_time - monitoring_interval).
82 83 84 85 |
# File 'proto_docs/google/cloud/aiplatform/v1/feature_monitoring_stats.rb', line 82 class FeatureStatsAnomaly include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end |
#stats_uri ⇒ ::String
Returns Path of the stats file for current feature values in Cloud Storage bucket.
Format: gs://
82 83 84 85 |
# File 'proto_docs/google/cloud/aiplatform/v1/feature_monitoring_stats.rb', line 82 class FeatureStatsAnomaly include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end |