Class: Google::Cloud::AIPlatform::V1::ModelDeploymentMonitoringJob
- Inherits:
-
Object
- Object
- Google::Cloud::AIPlatform::V1::ModelDeploymentMonitoringJob
- Extended by:
- Protobuf::MessageExts::ClassMethods
- Includes:
- Protobuf::MessageExts
- Defined in:
- proto_docs/google/cloud/aiplatform/v1/model_deployment_monitoring_job.rb
Overview
Represents a job that runs periodically to monitor the deployed models in an endpoint. It will analyze the logged training & prediction data to detect any abnormal behaviors.
Defined Under Namespace
Modules: MonitoringScheduleState Classes: LabelsEntry, LatestMonitoringPipelineMetadata
Instance Attribute Summary collapse
-
#analysis_instance_schema_uri ⇒ ::String
YAML schema file uri describing the format of a single instance that you want Tensorflow Data Validation (TFDV) to analyze.
-
#bigquery_tables ⇒ ::Array<::Google::Cloud::AIPlatform::V1::ModelDeploymentMonitoringBigQueryTable>
readonly
Output only.
-
#create_time ⇒ ::Google::Protobuf::Timestamp
readonly
Output only.
-
#display_name ⇒ ::String
Required.
-
#enable_monitoring_pipeline_logs ⇒ ::Boolean
If true, the scheduled monitoring pipeline logs are sent to Google Cloud Logging, including pipeline status and anomalies detected.
-
#encryption_spec ⇒ ::Google::Cloud::AIPlatform::V1::EncryptionSpec
Customer-managed encryption key spec for a ModelDeploymentMonitoringJob.
-
#endpoint ⇒ ::String
Required.
-
#error ⇒ ::Google::Rpc::Status
readonly
Output only.
-
#labels ⇒ ::Google::Protobuf::Map{::String => ::String}
The labels with user-defined metadata to organize your ModelDeploymentMonitoringJob.
-
#latest_monitoring_pipeline_metadata ⇒ ::Google::Cloud::AIPlatform::V1::ModelDeploymentMonitoringJob::LatestMonitoringPipelineMetadata
readonly
Output only.
-
#log_ttl ⇒ ::Google::Protobuf::Duration
The TTL of BigQuery tables in user projects which stores logs.
-
#logging_sampling_strategy ⇒ ::Google::Cloud::AIPlatform::V1::SamplingStrategy
Required.
-
#model_deployment_monitoring_objective_configs ⇒ ::Array<::Google::Cloud::AIPlatform::V1::ModelDeploymentMonitoringObjectiveConfig>
Required.
-
#model_deployment_monitoring_schedule_config ⇒ ::Google::Cloud::AIPlatform::V1::ModelDeploymentMonitoringScheduleConfig
Required.
-
#model_monitoring_alert_config ⇒ ::Google::Cloud::AIPlatform::V1::ModelMonitoringAlertConfig
Alert config for model monitoring.
-
#name ⇒ ::String
readonly
Output only.
-
#next_schedule_time ⇒ ::Google::Protobuf::Timestamp
readonly
Output only.
-
#predict_instance_schema_uri ⇒ ::String
YAML schema file uri describing the format of a single instance, which are given to format this Endpoint's prediction (and explanation).
-
#sample_predict_instance ⇒ ::Google::Protobuf::Value
Sample Predict instance, same format as PredictRequest.instances, this can be set as a replacement of ModelDeploymentMonitoringJob.predict_instance_schema_uri.
-
#satisfies_pzi ⇒ ::Boolean
readonly
Output only.
-
#satisfies_pzs ⇒ ::Boolean
readonly
Output only.
-
#schedule_state ⇒ ::Google::Cloud::AIPlatform::V1::ModelDeploymentMonitoringJob::MonitoringScheduleState
readonly
Output only.
-
#state ⇒ ::Google::Cloud::AIPlatform::V1::JobState
readonly
Output only.
-
#stats_anomalies_base_directory ⇒ ::Google::Cloud::AIPlatform::V1::GcsDestination
Stats anomalies base folder path.
-
#update_time ⇒ ::Google::Protobuf::Timestamp
readonly
Output only.
Instance Attribute Details
#analysis_instance_schema_uri ⇒ ::String
Returns YAML schema file uri describing the format of a single instance that you want Tensorflow Data Validation (TFDV) to analyze.
If this field is empty, all the feature data types are inferred from predict_instance_schema_uri, meaning that TFDV will use the data in the exact format(data type) as prediction request/response. If there are any data type differences between predict instance and TFDV instance, this field can be used to override the schema. For models trained with Vertex AI, this field must be set as all the fields in predict instance formatted as string.
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
# File 'proto_docs/google/cloud/aiplatform/v1/model_deployment_monitoring_job.rb', line 150 class ModelDeploymentMonitoringJob include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # All metadata of most recent monitoring pipelines. # @!attribute [rw] run_time # @return [::Google::Protobuf::Timestamp] # The time that most recent monitoring pipelines that is related to this # run. # @!attribute [rw] status # @return [::Google::Rpc::Status] # The status of the most recent monitoring pipeline. class LatestMonitoringPipelineMetadata include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The state to Specify the monitoring pipeline. module MonitoringScheduleState # Unspecified state. MONITORING_SCHEDULE_STATE_UNSPECIFIED = 0 # The pipeline is picked up and wait to run. PENDING = 1 # The pipeline is offline and will be scheduled for next run. OFFLINE = 2 # The pipeline is running. RUNNING = 3 end end |
#bigquery_tables ⇒ ::Array<::Google::Cloud::AIPlatform::V1::ModelDeploymentMonitoringBigQueryTable> (readonly)
Returns Output only. The created bigquery tables for the job under customer project. Customer could do their own query & analysis. There could be 4 log tables in maximum:
- Training data logging predict request/response
- Serving data logging predict request/response.
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
# File 'proto_docs/google/cloud/aiplatform/v1/model_deployment_monitoring_job.rb', line 150 class ModelDeploymentMonitoringJob include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # All metadata of most recent monitoring pipelines. # @!attribute [rw] run_time # @return [::Google::Protobuf::Timestamp] # The time that most recent monitoring pipelines that is related to this # run. # @!attribute [rw] status # @return [::Google::Rpc::Status] # The status of the most recent monitoring pipeline. class LatestMonitoringPipelineMetadata include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The state to Specify the monitoring pipeline. module MonitoringScheduleState # Unspecified state. MONITORING_SCHEDULE_STATE_UNSPECIFIED = 0 # The pipeline is picked up and wait to run. PENDING = 1 # The pipeline is offline and will be scheduled for next run. OFFLINE = 2 # The pipeline is running. RUNNING = 3 end end |
#create_time ⇒ ::Google::Protobuf::Timestamp (readonly)
Returns Output only. Timestamp when this ModelDeploymentMonitoringJob was created.
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
# File 'proto_docs/google/cloud/aiplatform/v1/model_deployment_monitoring_job.rb', line 150 class ModelDeploymentMonitoringJob include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # All metadata of most recent monitoring pipelines. # @!attribute [rw] run_time # @return [::Google::Protobuf::Timestamp] # The time that most recent monitoring pipelines that is related to this # run. # @!attribute [rw] status # @return [::Google::Rpc::Status] # The status of the most recent monitoring pipeline. class LatestMonitoringPipelineMetadata include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The state to Specify the monitoring pipeline. module MonitoringScheduleState # Unspecified state. MONITORING_SCHEDULE_STATE_UNSPECIFIED = 0 # The pipeline is picked up and wait to run. PENDING = 1 # The pipeline is offline and will be scheduled for next run. OFFLINE = 2 # The pipeline is running. RUNNING = 3 end end |
#display_name ⇒ ::String
Returns Required. The user-defined name of the ModelDeploymentMonitoringJob. The name can be up to 128 characters long and can consist of any UTF-8 characters. Display name of a ModelDeploymentMonitoringJob.
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
# File 'proto_docs/google/cloud/aiplatform/v1/model_deployment_monitoring_job.rb', line 150 class ModelDeploymentMonitoringJob include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # All metadata of most recent monitoring pipelines. # @!attribute [rw] run_time # @return [::Google::Protobuf::Timestamp] # The time that most recent monitoring pipelines that is related to this # run. # @!attribute [rw] status # @return [::Google::Rpc::Status] # The status of the most recent monitoring pipeline. class LatestMonitoringPipelineMetadata include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The state to Specify the monitoring pipeline. module MonitoringScheduleState # Unspecified state. MONITORING_SCHEDULE_STATE_UNSPECIFIED = 0 # The pipeline is picked up and wait to run. PENDING = 1 # The pipeline is offline and will be scheduled for next run. OFFLINE = 2 # The pipeline is running. RUNNING = 3 end end |
#enable_monitoring_pipeline_logs ⇒ ::Boolean
Returns If true, the scheduled monitoring pipeline logs are sent to Google Cloud Logging, including pipeline status and anomalies detected. Please note the logs incur cost, which are subject to Cloud Logging pricing.
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
# File 'proto_docs/google/cloud/aiplatform/v1/model_deployment_monitoring_job.rb', line 150 class ModelDeploymentMonitoringJob include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # All metadata of most recent monitoring pipelines. # @!attribute [rw] run_time # @return [::Google::Protobuf::Timestamp] # The time that most recent monitoring pipelines that is related to this # run. # @!attribute [rw] status # @return [::Google::Rpc::Status] # The status of the most recent monitoring pipeline. class LatestMonitoringPipelineMetadata include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The state to Specify the monitoring pipeline. module MonitoringScheduleState # Unspecified state. MONITORING_SCHEDULE_STATE_UNSPECIFIED = 0 # The pipeline is picked up and wait to run. PENDING = 1 # The pipeline is offline and will be scheduled for next run. OFFLINE = 2 # The pipeline is running. RUNNING = 3 end end |
#encryption_spec ⇒ ::Google::Cloud::AIPlatform::V1::EncryptionSpec
Returns Customer-managed encryption key spec for a ModelDeploymentMonitoringJob. If set, this ModelDeploymentMonitoringJob and all sub-resources of this ModelDeploymentMonitoringJob will be secured by this key.
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
# File 'proto_docs/google/cloud/aiplatform/v1/model_deployment_monitoring_job.rb', line 150 class ModelDeploymentMonitoringJob include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # All metadata of most recent monitoring pipelines. # @!attribute [rw] run_time # @return [::Google::Protobuf::Timestamp] # The time that most recent monitoring pipelines that is related to this # run. # @!attribute [rw] status # @return [::Google::Rpc::Status] # The status of the most recent monitoring pipeline. class LatestMonitoringPipelineMetadata include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The state to Specify the monitoring pipeline. module MonitoringScheduleState # Unspecified state. MONITORING_SCHEDULE_STATE_UNSPECIFIED = 0 # The pipeline is picked up and wait to run. PENDING = 1 # The pipeline is offline and will be scheduled for next run. OFFLINE = 2 # The pipeline is running. RUNNING = 3 end end |
#endpoint ⇒ ::String
Returns Required. Endpoint resource name.
Format: projects/{project}/locations/{location}/endpoints/{endpoint}
.
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
# File 'proto_docs/google/cloud/aiplatform/v1/model_deployment_monitoring_job.rb', line 150 class ModelDeploymentMonitoringJob include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # All metadata of most recent monitoring pipelines. # @!attribute [rw] run_time # @return [::Google::Protobuf::Timestamp] # The time that most recent monitoring pipelines that is related to this # run. # @!attribute [rw] status # @return [::Google::Rpc::Status] # The status of the most recent monitoring pipeline. class LatestMonitoringPipelineMetadata include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The state to Specify the monitoring pipeline. module MonitoringScheduleState # Unspecified state. MONITORING_SCHEDULE_STATE_UNSPECIFIED = 0 # The pipeline is picked up and wait to run. PENDING = 1 # The pipeline is offline and will be scheduled for next run. OFFLINE = 2 # The pipeline is running. RUNNING = 3 end end |
#error ⇒ ::Google::Rpc::Status (readonly)
Returns Output only. Only populated when the job's state is JOB_STATE_FAILED
or
JOB_STATE_CANCELLED
.
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
# File 'proto_docs/google/cloud/aiplatform/v1/model_deployment_monitoring_job.rb', line 150 class ModelDeploymentMonitoringJob include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # All metadata of most recent monitoring pipelines. # @!attribute [rw] run_time # @return [::Google::Protobuf::Timestamp] # The time that most recent monitoring pipelines that is related to this # run. # @!attribute [rw] status # @return [::Google::Rpc::Status] # The status of the most recent monitoring pipeline. class LatestMonitoringPipelineMetadata include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The state to Specify the monitoring pipeline. module MonitoringScheduleState # Unspecified state. MONITORING_SCHEDULE_STATE_UNSPECIFIED = 0 # The pipeline is picked up and wait to run. PENDING = 1 # The pipeline is offline and will be scheduled for next run. OFFLINE = 2 # The pipeline is running. RUNNING = 3 end end |
#labels ⇒ ::Google::Protobuf::Map{::String => ::String}
Returns The labels with user-defined metadata to organize your ModelDeploymentMonitoringJob.
Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed.
See https://goo.gl/xmQnxf for more information and examples of labels.
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
# File 'proto_docs/google/cloud/aiplatform/v1/model_deployment_monitoring_job.rb', line 150 class ModelDeploymentMonitoringJob include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # All metadata of most recent monitoring pipelines. # @!attribute [rw] run_time # @return [::Google::Protobuf::Timestamp] # The time that most recent monitoring pipelines that is related to this # run. # @!attribute [rw] status # @return [::Google::Rpc::Status] # The status of the most recent monitoring pipeline. class LatestMonitoringPipelineMetadata include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The state to Specify the monitoring pipeline. module MonitoringScheduleState # Unspecified state. MONITORING_SCHEDULE_STATE_UNSPECIFIED = 0 # The pipeline is picked up and wait to run. PENDING = 1 # The pipeline is offline and will be scheduled for next run. OFFLINE = 2 # The pipeline is running. RUNNING = 3 end end |
#latest_monitoring_pipeline_metadata ⇒ ::Google::Cloud::AIPlatform::V1::ModelDeploymentMonitoringJob::LatestMonitoringPipelineMetadata (readonly)
Returns Output only. Latest triggered monitoring pipeline metadata.
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
# File 'proto_docs/google/cloud/aiplatform/v1/model_deployment_monitoring_job.rb', line 150 class ModelDeploymentMonitoringJob include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # All metadata of most recent monitoring pipelines. # @!attribute [rw] run_time # @return [::Google::Protobuf::Timestamp] # The time that most recent monitoring pipelines that is related to this # run. # @!attribute [rw] status # @return [::Google::Rpc::Status] # The status of the most recent monitoring pipeline. class LatestMonitoringPipelineMetadata include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The state to Specify the monitoring pipeline. module MonitoringScheduleState # Unspecified state. MONITORING_SCHEDULE_STATE_UNSPECIFIED = 0 # The pipeline is picked up and wait to run. PENDING = 1 # The pipeline is offline and will be scheduled for next run. OFFLINE = 2 # The pipeline is running. RUNNING = 3 end end |
#log_ttl ⇒ ::Google::Protobuf::Duration
Returns The TTL of BigQuery tables in user projects which stores logs. A day is the basic unit of the TTL and we take the ceil of TTL/86400(a day). e.g. { second: 3600} indicates ttl = 1 day.
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
# File 'proto_docs/google/cloud/aiplatform/v1/model_deployment_monitoring_job.rb', line 150 class ModelDeploymentMonitoringJob include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # All metadata of most recent monitoring pipelines. # @!attribute [rw] run_time # @return [::Google::Protobuf::Timestamp] # The time that most recent monitoring pipelines that is related to this # run. # @!attribute [rw] status # @return [::Google::Rpc::Status] # The status of the most recent monitoring pipeline. class LatestMonitoringPipelineMetadata include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The state to Specify the monitoring pipeline. module MonitoringScheduleState # Unspecified state. MONITORING_SCHEDULE_STATE_UNSPECIFIED = 0 # The pipeline is picked up and wait to run. PENDING = 1 # The pipeline is offline and will be scheduled for next run. OFFLINE = 2 # The pipeline is running. RUNNING = 3 end end |
#logging_sampling_strategy ⇒ ::Google::Cloud::AIPlatform::V1::SamplingStrategy
Returns Required. Sample Strategy for logging.
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
# File 'proto_docs/google/cloud/aiplatform/v1/model_deployment_monitoring_job.rb', line 150 class ModelDeploymentMonitoringJob include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # All metadata of most recent monitoring pipelines. # @!attribute [rw] run_time # @return [::Google::Protobuf::Timestamp] # The time that most recent monitoring pipelines that is related to this # run. # @!attribute [rw] status # @return [::Google::Rpc::Status] # The status of the most recent monitoring pipeline. class LatestMonitoringPipelineMetadata include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The state to Specify the monitoring pipeline. module MonitoringScheduleState # Unspecified state. MONITORING_SCHEDULE_STATE_UNSPECIFIED = 0 # The pipeline is picked up and wait to run. PENDING = 1 # The pipeline is offline and will be scheduled for next run. OFFLINE = 2 # The pipeline is running. RUNNING = 3 end end |
#model_deployment_monitoring_objective_configs ⇒ ::Array<::Google::Cloud::AIPlatform::V1::ModelDeploymentMonitoringObjectiveConfig>
Returns Required. The config for monitoring objectives. This is a per DeployedModel config. Each DeployedModel needs to be configured separately.
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
# File 'proto_docs/google/cloud/aiplatform/v1/model_deployment_monitoring_job.rb', line 150 class ModelDeploymentMonitoringJob include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # All metadata of most recent monitoring pipelines. # @!attribute [rw] run_time # @return [::Google::Protobuf::Timestamp] # The time that most recent monitoring pipelines that is related to this # run. # @!attribute [rw] status # @return [::Google::Rpc::Status] # The status of the most recent monitoring pipeline. class LatestMonitoringPipelineMetadata include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The state to Specify the monitoring pipeline. module MonitoringScheduleState # Unspecified state. MONITORING_SCHEDULE_STATE_UNSPECIFIED = 0 # The pipeline is picked up and wait to run. PENDING = 1 # The pipeline is offline and will be scheduled for next run. OFFLINE = 2 # The pipeline is running. RUNNING = 3 end end |
#model_deployment_monitoring_schedule_config ⇒ ::Google::Cloud::AIPlatform::V1::ModelDeploymentMonitoringScheduleConfig
Returns Required. Schedule config for running the monitoring job.
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
# File 'proto_docs/google/cloud/aiplatform/v1/model_deployment_monitoring_job.rb', line 150 class ModelDeploymentMonitoringJob include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # All metadata of most recent monitoring pipelines. # @!attribute [rw] run_time # @return [::Google::Protobuf::Timestamp] # The time that most recent monitoring pipelines that is related to this # run. # @!attribute [rw] status # @return [::Google::Rpc::Status] # The status of the most recent monitoring pipeline. class LatestMonitoringPipelineMetadata include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The state to Specify the monitoring pipeline. module MonitoringScheduleState # Unspecified state. MONITORING_SCHEDULE_STATE_UNSPECIFIED = 0 # The pipeline is picked up and wait to run. PENDING = 1 # The pipeline is offline and will be scheduled for next run. OFFLINE = 2 # The pipeline is running. RUNNING = 3 end end |
#model_monitoring_alert_config ⇒ ::Google::Cloud::AIPlatform::V1::ModelMonitoringAlertConfig
Returns Alert config for model monitoring.
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
# File 'proto_docs/google/cloud/aiplatform/v1/model_deployment_monitoring_job.rb', line 150 class ModelDeploymentMonitoringJob include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # All metadata of most recent monitoring pipelines. # @!attribute [rw] run_time # @return [::Google::Protobuf::Timestamp] # The time that most recent monitoring pipelines that is related to this # run. # @!attribute [rw] status # @return [::Google::Rpc::Status] # The status of the most recent monitoring pipeline. class LatestMonitoringPipelineMetadata include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The state to Specify the monitoring pipeline. module MonitoringScheduleState # Unspecified state. MONITORING_SCHEDULE_STATE_UNSPECIFIED = 0 # The pipeline is picked up and wait to run. PENDING = 1 # The pipeline is offline and will be scheduled for next run. OFFLINE = 2 # The pipeline is running. RUNNING = 3 end end |
#name ⇒ ::String (readonly)
Returns Output only. Resource name of a ModelDeploymentMonitoringJob.
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
# File 'proto_docs/google/cloud/aiplatform/v1/model_deployment_monitoring_job.rb', line 150 class ModelDeploymentMonitoringJob include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # All metadata of most recent monitoring pipelines. # @!attribute [rw] run_time # @return [::Google::Protobuf::Timestamp] # The time that most recent monitoring pipelines that is related to this # run. # @!attribute [rw] status # @return [::Google::Rpc::Status] # The status of the most recent monitoring pipeline. class LatestMonitoringPipelineMetadata include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The state to Specify the monitoring pipeline. module MonitoringScheduleState # Unspecified state. MONITORING_SCHEDULE_STATE_UNSPECIFIED = 0 # The pipeline is picked up and wait to run. PENDING = 1 # The pipeline is offline and will be scheduled for next run. OFFLINE = 2 # The pipeline is running. RUNNING = 3 end end |
#next_schedule_time ⇒ ::Google::Protobuf::Timestamp (readonly)
Returns Output only. Timestamp when this monitoring pipeline will be scheduled to run for the next round.
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
# File 'proto_docs/google/cloud/aiplatform/v1/model_deployment_monitoring_job.rb', line 150 class ModelDeploymentMonitoringJob include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # All metadata of most recent monitoring pipelines. # @!attribute [rw] run_time # @return [::Google::Protobuf::Timestamp] # The time that most recent monitoring pipelines that is related to this # run. # @!attribute [rw] status # @return [::Google::Rpc::Status] # The status of the most recent monitoring pipeline. class LatestMonitoringPipelineMetadata include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The state to Specify the monitoring pipeline. module MonitoringScheduleState # Unspecified state. MONITORING_SCHEDULE_STATE_UNSPECIFIED = 0 # The pipeline is picked up and wait to run. PENDING = 1 # The pipeline is offline and will be scheduled for next run. OFFLINE = 2 # The pipeline is running. RUNNING = 3 end end |
#predict_instance_schema_uri ⇒ ::String
Returns YAML schema file uri describing the format of a single instance, which are given to format this Endpoint's prediction (and explanation). If not set, we will generate predict schema from collected predict requests.
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
# File 'proto_docs/google/cloud/aiplatform/v1/model_deployment_monitoring_job.rb', line 150 class ModelDeploymentMonitoringJob include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # All metadata of most recent monitoring pipelines. # @!attribute [rw] run_time # @return [::Google::Protobuf::Timestamp] # The time that most recent monitoring pipelines that is related to this # run. # @!attribute [rw] status # @return [::Google::Rpc::Status] # The status of the most recent monitoring pipeline. class LatestMonitoringPipelineMetadata include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The state to Specify the monitoring pipeline. module MonitoringScheduleState # Unspecified state. MONITORING_SCHEDULE_STATE_UNSPECIFIED = 0 # The pipeline is picked up and wait to run. PENDING = 1 # The pipeline is offline and will be scheduled for next run. OFFLINE = 2 # The pipeline is running. RUNNING = 3 end end |
#sample_predict_instance ⇒ ::Google::Protobuf::Value
Returns Sample Predict instance, same format as PredictRequest.instances, this can be set as a replacement of ModelDeploymentMonitoringJob.predict_instance_schema_uri. If not set, we will generate predict schema from collected predict requests.
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
# File 'proto_docs/google/cloud/aiplatform/v1/model_deployment_monitoring_job.rb', line 150 class ModelDeploymentMonitoringJob include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # All metadata of most recent monitoring pipelines. # @!attribute [rw] run_time # @return [::Google::Protobuf::Timestamp] # The time that most recent monitoring pipelines that is related to this # run. # @!attribute [rw] status # @return [::Google::Rpc::Status] # The status of the most recent monitoring pipeline. class LatestMonitoringPipelineMetadata include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The state to Specify the monitoring pipeline. module MonitoringScheduleState # Unspecified state. MONITORING_SCHEDULE_STATE_UNSPECIFIED = 0 # The pipeline is picked up and wait to run. PENDING = 1 # The pipeline is offline and will be scheduled for next run. OFFLINE = 2 # The pipeline is running. RUNNING = 3 end end |
#satisfies_pzi ⇒ ::Boolean (readonly)
Returns Output only. Reserved for future use.
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
# File 'proto_docs/google/cloud/aiplatform/v1/model_deployment_monitoring_job.rb', line 150 class ModelDeploymentMonitoringJob include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # All metadata of most recent monitoring pipelines. # @!attribute [rw] run_time # @return [::Google::Protobuf::Timestamp] # The time that most recent monitoring pipelines that is related to this # run. # @!attribute [rw] status # @return [::Google::Rpc::Status] # The status of the most recent monitoring pipeline. class LatestMonitoringPipelineMetadata include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The state to Specify the monitoring pipeline. module MonitoringScheduleState # Unspecified state. MONITORING_SCHEDULE_STATE_UNSPECIFIED = 0 # The pipeline is picked up and wait to run. PENDING = 1 # The pipeline is offline and will be scheduled for next run. OFFLINE = 2 # The pipeline is running. RUNNING = 3 end end |
#satisfies_pzs ⇒ ::Boolean (readonly)
Returns Output only. Reserved for future use.
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
# File 'proto_docs/google/cloud/aiplatform/v1/model_deployment_monitoring_job.rb', line 150 class ModelDeploymentMonitoringJob include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # All metadata of most recent monitoring pipelines. # @!attribute [rw] run_time # @return [::Google::Protobuf::Timestamp] # The time that most recent monitoring pipelines that is related to this # run. # @!attribute [rw] status # @return [::Google::Rpc::Status] # The status of the most recent monitoring pipeline. class LatestMonitoringPipelineMetadata include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The state to Specify the monitoring pipeline. module MonitoringScheduleState # Unspecified state. MONITORING_SCHEDULE_STATE_UNSPECIFIED = 0 # The pipeline is picked up and wait to run. PENDING = 1 # The pipeline is offline and will be scheduled for next run. OFFLINE = 2 # The pipeline is running. RUNNING = 3 end end |
#schedule_state ⇒ ::Google::Cloud::AIPlatform::V1::ModelDeploymentMonitoringJob::MonitoringScheduleState (readonly)
Returns Output only. Schedule state when the monitoring job is in Running state.
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
# File 'proto_docs/google/cloud/aiplatform/v1/model_deployment_monitoring_job.rb', line 150 class ModelDeploymentMonitoringJob include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # All metadata of most recent monitoring pipelines. # @!attribute [rw] run_time # @return [::Google::Protobuf::Timestamp] # The time that most recent monitoring pipelines that is related to this # run. # @!attribute [rw] status # @return [::Google::Rpc::Status] # The status of the most recent monitoring pipeline. class LatestMonitoringPipelineMetadata include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The state to Specify the monitoring pipeline. module MonitoringScheduleState # Unspecified state. MONITORING_SCHEDULE_STATE_UNSPECIFIED = 0 # The pipeline is picked up and wait to run. PENDING = 1 # The pipeline is offline and will be scheduled for next run. OFFLINE = 2 # The pipeline is running. RUNNING = 3 end end |
#state ⇒ ::Google::Cloud::AIPlatform::V1::JobState (readonly)
Returns Output only. The detailed state of the monitoring job. When the job is still creating, the state will be 'PENDING'. Once the job is successfully created, the state will be 'RUNNING'. Pause the job, the state will be 'PAUSED'. Resume the job, the state will return to 'RUNNING'.
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
# File 'proto_docs/google/cloud/aiplatform/v1/model_deployment_monitoring_job.rb', line 150 class ModelDeploymentMonitoringJob include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # All metadata of most recent monitoring pipelines. # @!attribute [rw] run_time # @return [::Google::Protobuf::Timestamp] # The time that most recent monitoring pipelines that is related to this # run. # @!attribute [rw] status # @return [::Google::Rpc::Status] # The status of the most recent monitoring pipeline. class LatestMonitoringPipelineMetadata include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The state to Specify the monitoring pipeline. module MonitoringScheduleState # Unspecified state. MONITORING_SCHEDULE_STATE_UNSPECIFIED = 0 # The pipeline is picked up and wait to run. PENDING = 1 # The pipeline is offline and will be scheduled for next run. OFFLINE = 2 # The pipeline is running. RUNNING = 3 end end |
#stats_anomalies_base_directory ⇒ ::Google::Cloud::AIPlatform::V1::GcsDestination
Returns Stats anomalies base folder path.
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
# File 'proto_docs/google/cloud/aiplatform/v1/model_deployment_monitoring_job.rb', line 150 class ModelDeploymentMonitoringJob include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # All metadata of most recent monitoring pipelines. # @!attribute [rw] run_time # @return [::Google::Protobuf::Timestamp] # The time that most recent monitoring pipelines that is related to this # run. # @!attribute [rw] status # @return [::Google::Rpc::Status] # The status of the most recent monitoring pipeline. class LatestMonitoringPipelineMetadata include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The state to Specify the monitoring pipeline. module MonitoringScheduleState # Unspecified state. MONITORING_SCHEDULE_STATE_UNSPECIFIED = 0 # The pipeline is picked up and wait to run. PENDING = 1 # The pipeline is offline and will be scheduled for next run. OFFLINE = 2 # The pipeline is running. RUNNING = 3 end end |
#update_time ⇒ ::Google::Protobuf::Timestamp (readonly)
Returns Output only. Timestamp when this ModelDeploymentMonitoringJob was updated most recently.
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
# File 'proto_docs/google/cloud/aiplatform/v1/model_deployment_monitoring_job.rb', line 150 class ModelDeploymentMonitoringJob include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # All metadata of most recent monitoring pipelines. # @!attribute [rw] run_time # @return [::Google::Protobuf::Timestamp] # The time that most recent monitoring pipelines that is related to this # run. # @!attribute [rw] status # @return [::Google::Rpc::Status] # The status of the most recent monitoring pipeline. class LatestMonitoringPipelineMetadata include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The state to Specify the monitoring pipeline. module MonitoringScheduleState # Unspecified state. MONITORING_SCHEDULE_STATE_UNSPECIFIED = 0 # The pipeline is picked up and wait to run. PENDING = 1 # The pipeline is offline and will be scheduled for next run. OFFLINE = 2 # The pipeline is running. RUNNING = 3 end end |