Class: Google::Cloud::AIPlatform::V1::ModelEvaluationSlice
- Inherits:
-
Object
- Object
- Google::Cloud::AIPlatform::V1::ModelEvaluationSlice
- Extended by:
- Protobuf::MessageExts::ClassMethods
- Includes:
- Protobuf::MessageExts
- Defined in:
- proto_docs/google/cloud/aiplatform/v1/model_evaluation_slice.rb
Overview
A collection of metrics calculated by comparing Model's predictions on a slice of the test data against ground truth annotations.
Defined Under Namespace
Classes: Slice
Instance Attribute Summary collapse
-
#create_time ⇒ ::Google::Protobuf::Timestamp
readonly
Output only.
-
#metrics ⇒ ::Google::Protobuf::Value
readonly
Output only.
-
#metrics_schema_uri ⇒ ::String
readonly
Output only.
-
#model_explanation ⇒ ::Google::Cloud::AIPlatform::V1::ModelExplanation
readonly
Output only.
-
#name ⇒ ::String
readonly
Output only.
-
#slice ⇒ ::Google::Cloud::AIPlatform::V1::ModelEvaluationSlice::Slice
readonly
Output only.
Instance Attribute Details
#create_time ⇒ ::Google::Protobuf::Timestamp (readonly)
Returns Output only. Timestamp when this ModelEvaluationSlice was created.
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
# File 'proto_docs/google/cloud/aiplatform/v1/model_evaluation_slice.rb', line 53 class ModelEvaluationSlice include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Definition of a slice. # @!attribute [r] dimension # @return [::String] # Output only. The dimension of the slice. # Well-known dimensions are: # * `annotationSpec`: This slice is on the test data that has either # ground truth or prediction with # {::Google::Cloud::AIPlatform::V1::AnnotationSpec#display_name AnnotationSpec.display_name} # equals to # {::Google::Cloud::AIPlatform::V1::ModelEvaluationSlice::Slice#value value}. # * `slice`: This slice is a user customized slice defined by its # SliceSpec. # @!attribute [r] value # @return [::String] # Output only. The value of the dimension in this slice. # @!attribute [r] slice_spec # @return [::Google::Cloud::AIPlatform::V1::ModelEvaluationSlice::Slice::SliceSpec] # Output only. Specification for how the data was sliced. class Slice include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Specification for how the data should be sliced. # @!attribute [rw] configs # @return [::Google::Protobuf::Map{::String => ::Google::Cloud::AIPlatform::V1::ModelEvaluationSlice::Slice::SliceSpec::SliceConfig}] # Mapping configuration for this SliceSpec. # The key is the name of the feature. # By default, the key will be prefixed by "instance" as a dictionary # prefix for Vertex Batch Predictions output format. class SliceSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Specification message containing the config for this SliceSpec. # When `kind` is selected as `value` and/or `range`, only a single slice # will be computed. # When `all_values` is present, a separate slice will be computed for # each possible label/value for the corresponding key in `config`. # Examples, with feature zip_code with values 12345, 23334, 88888 and # feature country with values "US", "Canada", "Mexico" in the dataset: # # Example 1: # # { # "zip_code": { "value": { "float_value": 12345.0 } } # } # # A single slice for any data with zip_code 12345 in the dataset. # # Example 2: # # { # "zip_code": { "range": { "low": 12345, "high": 20000 } } # } # # A single slice containing data where the zip_codes between 12345 and # 20000 For this example, data with the zip_code of 12345 will be in this # slice. # # Example 3: # # { # "zip_code": { "range": { "low": 10000, "high": 20000 } }, # "country": { "value": { "string_value": "US" } } # } # # A single slice containing data where the zip_codes between 10000 and # 20000 has the country "US". For this example, data with the zip_code of # 12345 and country "US" will be in this slice. # # Example 4: # # { "country": {"all_values": { "value": true } } } # # Three slices are computed, one for each unique country in the dataset. # # Example 5: # # { # "country": { "all_values": { "value": true } }, # "zip_code": { "value": { "float_value": 12345.0 } } # } # # Three slices are computed, one for each unique country in the dataset # where the zip_code is also 12345. For this example, data with zip_code # 12345 and country "US" will be in one slice, zip_code 12345 and country # "Canada" in another slice, and zip_code 12345 and country "Mexico" in # another slice, totaling 3 slices. # @!attribute [rw] value # @return [::Google::Cloud::AIPlatform::V1::ModelEvaluationSlice::Slice::SliceSpec::Value] # A unique specific value for a given feature. # Example: `{ "value": { "string_value": "12345" } }` # @!attribute [rw] range # @return [::Google::Cloud::AIPlatform::V1::ModelEvaluationSlice::Slice::SliceSpec::Range] # A range of values for a numerical feature. # Example: `{"range":{"low":10000.0,"high":50000.0}}` # will capture 12345 and 23334 in the slice. # @!attribute [rw] all_values # @return [::Google::Protobuf::BoolValue] # If all_values is set to true, then all possible labels of the keyed # feature will have another slice computed. # Example: `{"all_values":{"value":true}}` class SliceConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # A range of values for slice(s). # `low` is inclusive, `high` is exclusive. # @!attribute [rw] low # @return [::Float] # Inclusive low value for the range. # @!attribute [rw] high # @return [::Float] # Exclusive high value for the range. class Range include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Single value that supports strings and floats. # @!attribute [rw] string_value # @return [::String] # String type. # @!attribute [rw] float_value # @return [::Float] # Float type. class Value include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::Google::Cloud::AIPlatform::V1::ModelEvaluationSlice::Slice::SliceSpec::SliceConfig] class ConfigsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end end end |
#metrics ⇒ ::Google::Protobuf::Value (readonly)
Returns Output only. Sliced evaluation metrics of the Model. The schema of the metrics is stored in metrics_schema_uri.
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
# File 'proto_docs/google/cloud/aiplatform/v1/model_evaluation_slice.rb', line 53 class ModelEvaluationSlice include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Definition of a slice. # @!attribute [r] dimension # @return [::String] # Output only. The dimension of the slice. # Well-known dimensions are: # * `annotationSpec`: This slice is on the test data that has either # ground truth or prediction with # {::Google::Cloud::AIPlatform::V1::AnnotationSpec#display_name AnnotationSpec.display_name} # equals to # {::Google::Cloud::AIPlatform::V1::ModelEvaluationSlice::Slice#value value}. # * `slice`: This slice is a user customized slice defined by its # SliceSpec. # @!attribute [r] value # @return [::String] # Output only. The value of the dimension in this slice. # @!attribute [r] slice_spec # @return [::Google::Cloud::AIPlatform::V1::ModelEvaluationSlice::Slice::SliceSpec] # Output only. Specification for how the data was sliced. class Slice include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Specification for how the data should be sliced. # @!attribute [rw] configs # @return [::Google::Protobuf::Map{::String => ::Google::Cloud::AIPlatform::V1::ModelEvaluationSlice::Slice::SliceSpec::SliceConfig}] # Mapping configuration for this SliceSpec. # The key is the name of the feature. # By default, the key will be prefixed by "instance" as a dictionary # prefix for Vertex Batch Predictions output format. class SliceSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Specification message containing the config for this SliceSpec. # When `kind` is selected as `value` and/or `range`, only a single slice # will be computed. # When `all_values` is present, a separate slice will be computed for # each possible label/value for the corresponding key in `config`. # Examples, with feature zip_code with values 12345, 23334, 88888 and # feature country with values "US", "Canada", "Mexico" in the dataset: # # Example 1: # # { # "zip_code": { "value": { "float_value": 12345.0 } } # } # # A single slice for any data with zip_code 12345 in the dataset. # # Example 2: # # { # "zip_code": { "range": { "low": 12345, "high": 20000 } } # } # # A single slice containing data where the zip_codes between 12345 and # 20000 For this example, data with the zip_code of 12345 will be in this # slice. # # Example 3: # # { # "zip_code": { "range": { "low": 10000, "high": 20000 } }, # "country": { "value": { "string_value": "US" } } # } # # A single slice containing data where the zip_codes between 10000 and # 20000 has the country "US". For this example, data with the zip_code of # 12345 and country "US" will be in this slice. # # Example 4: # # { "country": {"all_values": { "value": true } } } # # Three slices are computed, one for each unique country in the dataset. # # Example 5: # # { # "country": { "all_values": { "value": true } }, # "zip_code": { "value": { "float_value": 12345.0 } } # } # # Three slices are computed, one for each unique country in the dataset # where the zip_code is also 12345. For this example, data with zip_code # 12345 and country "US" will be in one slice, zip_code 12345 and country # "Canada" in another slice, and zip_code 12345 and country "Mexico" in # another slice, totaling 3 slices. # @!attribute [rw] value # @return [::Google::Cloud::AIPlatform::V1::ModelEvaluationSlice::Slice::SliceSpec::Value] # A unique specific value for a given feature. # Example: `{ "value": { "string_value": "12345" } }` # @!attribute [rw] range # @return [::Google::Cloud::AIPlatform::V1::ModelEvaluationSlice::Slice::SliceSpec::Range] # A range of values for a numerical feature. # Example: `{"range":{"low":10000.0,"high":50000.0}}` # will capture 12345 and 23334 in the slice. # @!attribute [rw] all_values # @return [::Google::Protobuf::BoolValue] # If all_values is set to true, then all possible labels of the keyed # feature will have another slice computed. # Example: `{"all_values":{"value":true}}` class SliceConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # A range of values for slice(s). # `low` is inclusive, `high` is exclusive. # @!attribute [rw] low # @return [::Float] # Inclusive low value for the range. # @!attribute [rw] high # @return [::Float] # Exclusive high value for the range. class Range include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Single value that supports strings and floats. # @!attribute [rw] string_value # @return [::String] # String type. # @!attribute [rw] float_value # @return [::Float] # Float type. class Value include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::Google::Cloud::AIPlatform::V1::ModelEvaluationSlice::Slice::SliceSpec::SliceConfig] class ConfigsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end end end |
#metrics_schema_uri ⇒ ::String (readonly)
Returns Output only. Points to a YAML file stored on Google Cloud Storage describing the metrics of this ModelEvaluationSlice. The schema is defined as an OpenAPI 3.0.2 Schema Object.
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
# File 'proto_docs/google/cloud/aiplatform/v1/model_evaluation_slice.rb', line 53 class ModelEvaluationSlice include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Definition of a slice. # @!attribute [r] dimension # @return [::String] # Output only. The dimension of the slice. # Well-known dimensions are: # * `annotationSpec`: This slice is on the test data that has either # ground truth or prediction with # {::Google::Cloud::AIPlatform::V1::AnnotationSpec#display_name AnnotationSpec.display_name} # equals to # {::Google::Cloud::AIPlatform::V1::ModelEvaluationSlice::Slice#value value}. # * `slice`: This slice is a user customized slice defined by its # SliceSpec. # @!attribute [r] value # @return [::String] # Output only. The value of the dimension in this slice. # @!attribute [r] slice_spec # @return [::Google::Cloud::AIPlatform::V1::ModelEvaluationSlice::Slice::SliceSpec] # Output only. Specification for how the data was sliced. class Slice include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Specification for how the data should be sliced. # @!attribute [rw] configs # @return [::Google::Protobuf::Map{::String => ::Google::Cloud::AIPlatform::V1::ModelEvaluationSlice::Slice::SliceSpec::SliceConfig}] # Mapping configuration for this SliceSpec. # The key is the name of the feature. # By default, the key will be prefixed by "instance" as a dictionary # prefix for Vertex Batch Predictions output format. class SliceSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Specification message containing the config for this SliceSpec. # When `kind` is selected as `value` and/or `range`, only a single slice # will be computed. # When `all_values` is present, a separate slice will be computed for # each possible label/value for the corresponding key in `config`. # Examples, with feature zip_code with values 12345, 23334, 88888 and # feature country with values "US", "Canada", "Mexico" in the dataset: # # Example 1: # # { # "zip_code": { "value": { "float_value": 12345.0 } } # } # # A single slice for any data with zip_code 12345 in the dataset. # # Example 2: # # { # "zip_code": { "range": { "low": 12345, "high": 20000 } } # } # # A single slice containing data where the zip_codes between 12345 and # 20000 For this example, data with the zip_code of 12345 will be in this # slice. # # Example 3: # # { # "zip_code": { "range": { "low": 10000, "high": 20000 } }, # "country": { "value": { "string_value": "US" } } # } # # A single slice containing data where the zip_codes between 10000 and # 20000 has the country "US". For this example, data with the zip_code of # 12345 and country "US" will be in this slice. # # Example 4: # # { "country": {"all_values": { "value": true } } } # # Three slices are computed, one for each unique country in the dataset. # # Example 5: # # { # "country": { "all_values": { "value": true } }, # "zip_code": { "value": { "float_value": 12345.0 } } # } # # Three slices are computed, one for each unique country in the dataset # where the zip_code is also 12345. For this example, data with zip_code # 12345 and country "US" will be in one slice, zip_code 12345 and country # "Canada" in another slice, and zip_code 12345 and country "Mexico" in # another slice, totaling 3 slices. # @!attribute [rw] value # @return [::Google::Cloud::AIPlatform::V1::ModelEvaluationSlice::Slice::SliceSpec::Value] # A unique specific value for a given feature. # Example: `{ "value": { "string_value": "12345" } }` # @!attribute [rw] range # @return [::Google::Cloud::AIPlatform::V1::ModelEvaluationSlice::Slice::SliceSpec::Range] # A range of values for a numerical feature. # Example: `{"range":{"low":10000.0,"high":50000.0}}` # will capture 12345 and 23334 in the slice. # @!attribute [rw] all_values # @return [::Google::Protobuf::BoolValue] # If all_values is set to true, then all possible labels of the keyed # feature will have another slice computed. # Example: `{"all_values":{"value":true}}` class SliceConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # A range of values for slice(s). # `low` is inclusive, `high` is exclusive. # @!attribute [rw] low # @return [::Float] # Inclusive low value for the range. # @!attribute [rw] high # @return [::Float] # Exclusive high value for the range. class Range include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Single value that supports strings and floats. # @!attribute [rw] string_value # @return [::String] # String type. # @!attribute [rw] float_value # @return [::Float] # Float type. class Value include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::Google::Cloud::AIPlatform::V1::ModelEvaluationSlice::Slice::SliceSpec::SliceConfig] class ConfigsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end end end |
#model_explanation ⇒ ::Google::Cloud::AIPlatform::V1::ModelExplanation (readonly)
Returns Output only. Aggregated explanation metrics for the Model's prediction output over the data this ModelEvaluation uses. This field is populated only if the Model is evaluated with explanations, and only for tabular Models.
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
# File 'proto_docs/google/cloud/aiplatform/v1/model_evaluation_slice.rb', line 53 class ModelEvaluationSlice include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Definition of a slice. # @!attribute [r] dimension # @return [::String] # Output only. The dimension of the slice. # Well-known dimensions are: # * `annotationSpec`: This slice is on the test data that has either # ground truth or prediction with # {::Google::Cloud::AIPlatform::V1::AnnotationSpec#display_name AnnotationSpec.display_name} # equals to # {::Google::Cloud::AIPlatform::V1::ModelEvaluationSlice::Slice#value value}. # * `slice`: This slice is a user customized slice defined by its # SliceSpec. # @!attribute [r] value # @return [::String] # Output only. The value of the dimension in this slice. # @!attribute [r] slice_spec # @return [::Google::Cloud::AIPlatform::V1::ModelEvaluationSlice::Slice::SliceSpec] # Output only. Specification for how the data was sliced. class Slice include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Specification for how the data should be sliced. # @!attribute [rw] configs # @return [::Google::Protobuf::Map{::String => ::Google::Cloud::AIPlatform::V1::ModelEvaluationSlice::Slice::SliceSpec::SliceConfig}] # Mapping configuration for this SliceSpec. # The key is the name of the feature. # By default, the key will be prefixed by "instance" as a dictionary # prefix for Vertex Batch Predictions output format. class SliceSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Specification message containing the config for this SliceSpec. # When `kind` is selected as `value` and/or `range`, only a single slice # will be computed. # When `all_values` is present, a separate slice will be computed for # each possible label/value for the corresponding key in `config`. # Examples, with feature zip_code with values 12345, 23334, 88888 and # feature country with values "US", "Canada", "Mexico" in the dataset: # # Example 1: # # { # "zip_code": { "value": { "float_value": 12345.0 } } # } # # A single slice for any data with zip_code 12345 in the dataset. # # Example 2: # # { # "zip_code": { "range": { "low": 12345, "high": 20000 } } # } # # A single slice containing data where the zip_codes between 12345 and # 20000 For this example, data with the zip_code of 12345 will be in this # slice. # # Example 3: # # { # "zip_code": { "range": { "low": 10000, "high": 20000 } }, # "country": { "value": { "string_value": "US" } } # } # # A single slice containing data where the zip_codes between 10000 and # 20000 has the country "US". For this example, data with the zip_code of # 12345 and country "US" will be in this slice. # # Example 4: # # { "country": {"all_values": { "value": true } } } # # Three slices are computed, one for each unique country in the dataset. # # Example 5: # # { # "country": { "all_values": { "value": true } }, # "zip_code": { "value": { "float_value": 12345.0 } } # } # # Three slices are computed, one for each unique country in the dataset # where the zip_code is also 12345. For this example, data with zip_code # 12345 and country "US" will be in one slice, zip_code 12345 and country # "Canada" in another slice, and zip_code 12345 and country "Mexico" in # another slice, totaling 3 slices. # @!attribute [rw] value # @return [::Google::Cloud::AIPlatform::V1::ModelEvaluationSlice::Slice::SliceSpec::Value] # A unique specific value for a given feature. # Example: `{ "value": { "string_value": "12345" } }` # @!attribute [rw] range # @return [::Google::Cloud::AIPlatform::V1::ModelEvaluationSlice::Slice::SliceSpec::Range] # A range of values for a numerical feature. # Example: `{"range":{"low":10000.0,"high":50000.0}}` # will capture 12345 and 23334 in the slice. # @!attribute [rw] all_values # @return [::Google::Protobuf::BoolValue] # If all_values is set to true, then all possible labels of the keyed # feature will have another slice computed. # Example: `{"all_values":{"value":true}}` class SliceConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # A range of values for slice(s). # `low` is inclusive, `high` is exclusive. # @!attribute [rw] low # @return [::Float] # Inclusive low value for the range. # @!attribute [rw] high # @return [::Float] # Exclusive high value for the range. class Range include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Single value that supports strings and floats. # @!attribute [rw] string_value # @return [::String] # String type. # @!attribute [rw] float_value # @return [::Float] # Float type. class Value include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::Google::Cloud::AIPlatform::V1::ModelEvaluationSlice::Slice::SliceSpec::SliceConfig] class ConfigsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end end end |
#name ⇒ ::String (readonly)
Returns Output only. The resource name of the ModelEvaluationSlice.
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
# File 'proto_docs/google/cloud/aiplatform/v1/model_evaluation_slice.rb', line 53 class ModelEvaluationSlice include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Definition of a slice. # @!attribute [r] dimension # @return [::String] # Output only. The dimension of the slice. # Well-known dimensions are: # * `annotationSpec`: This slice is on the test data that has either # ground truth or prediction with # {::Google::Cloud::AIPlatform::V1::AnnotationSpec#display_name AnnotationSpec.display_name} # equals to # {::Google::Cloud::AIPlatform::V1::ModelEvaluationSlice::Slice#value value}. # * `slice`: This slice is a user customized slice defined by its # SliceSpec. # @!attribute [r] value # @return [::String] # Output only. The value of the dimension in this slice. # @!attribute [r] slice_spec # @return [::Google::Cloud::AIPlatform::V1::ModelEvaluationSlice::Slice::SliceSpec] # Output only. Specification for how the data was sliced. class Slice include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Specification for how the data should be sliced. # @!attribute [rw] configs # @return [::Google::Protobuf::Map{::String => ::Google::Cloud::AIPlatform::V1::ModelEvaluationSlice::Slice::SliceSpec::SliceConfig}] # Mapping configuration for this SliceSpec. # The key is the name of the feature. # By default, the key will be prefixed by "instance" as a dictionary # prefix for Vertex Batch Predictions output format. class SliceSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Specification message containing the config for this SliceSpec. # When `kind` is selected as `value` and/or `range`, only a single slice # will be computed. # When `all_values` is present, a separate slice will be computed for # each possible label/value for the corresponding key in `config`. # Examples, with feature zip_code with values 12345, 23334, 88888 and # feature country with values "US", "Canada", "Mexico" in the dataset: # # Example 1: # # { # "zip_code": { "value": { "float_value": 12345.0 } } # } # # A single slice for any data with zip_code 12345 in the dataset. # # Example 2: # # { # "zip_code": { "range": { "low": 12345, "high": 20000 } } # } # # A single slice containing data where the zip_codes between 12345 and # 20000 For this example, data with the zip_code of 12345 will be in this # slice. # # Example 3: # # { # "zip_code": { "range": { "low": 10000, "high": 20000 } }, # "country": { "value": { "string_value": "US" } } # } # # A single slice containing data where the zip_codes between 10000 and # 20000 has the country "US". For this example, data with the zip_code of # 12345 and country "US" will be in this slice. # # Example 4: # # { "country": {"all_values": { "value": true } } } # # Three slices are computed, one for each unique country in the dataset. # # Example 5: # # { # "country": { "all_values": { "value": true } }, # "zip_code": { "value": { "float_value": 12345.0 } } # } # # Three slices are computed, one for each unique country in the dataset # where the zip_code is also 12345. For this example, data with zip_code # 12345 and country "US" will be in one slice, zip_code 12345 and country # "Canada" in another slice, and zip_code 12345 and country "Mexico" in # another slice, totaling 3 slices. # @!attribute [rw] value # @return [::Google::Cloud::AIPlatform::V1::ModelEvaluationSlice::Slice::SliceSpec::Value] # A unique specific value for a given feature. # Example: `{ "value": { "string_value": "12345" } }` # @!attribute [rw] range # @return [::Google::Cloud::AIPlatform::V1::ModelEvaluationSlice::Slice::SliceSpec::Range] # A range of values for a numerical feature. # Example: `{"range":{"low":10000.0,"high":50000.0}}` # will capture 12345 and 23334 in the slice. # @!attribute [rw] all_values # @return [::Google::Protobuf::BoolValue] # If all_values is set to true, then all possible labels of the keyed # feature will have another slice computed. # Example: `{"all_values":{"value":true}}` class SliceConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # A range of values for slice(s). # `low` is inclusive, `high` is exclusive. # @!attribute [rw] low # @return [::Float] # Inclusive low value for the range. # @!attribute [rw] high # @return [::Float] # Exclusive high value for the range. class Range include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Single value that supports strings and floats. # @!attribute [rw] string_value # @return [::String] # String type. # @!attribute [rw] float_value # @return [::Float] # Float type. class Value include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::Google::Cloud::AIPlatform::V1::ModelEvaluationSlice::Slice::SliceSpec::SliceConfig] class ConfigsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end end end |
#slice ⇒ ::Google::Cloud::AIPlatform::V1::ModelEvaluationSlice::Slice (readonly)
Returns Output only. The slice of the test data that is used to evaluate the Model.
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
# File 'proto_docs/google/cloud/aiplatform/v1/model_evaluation_slice.rb', line 53 class ModelEvaluationSlice include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Definition of a slice. # @!attribute [r] dimension # @return [::String] # Output only. The dimension of the slice. # Well-known dimensions are: # * `annotationSpec`: This slice is on the test data that has either # ground truth or prediction with # {::Google::Cloud::AIPlatform::V1::AnnotationSpec#display_name AnnotationSpec.display_name} # equals to # {::Google::Cloud::AIPlatform::V1::ModelEvaluationSlice::Slice#value value}. # * `slice`: This slice is a user customized slice defined by its # SliceSpec. # @!attribute [r] value # @return [::String] # Output only. The value of the dimension in this slice. # @!attribute [r] slice_spec # @return [::Google::Cloud::AIPlatform::V1::ModelEvaluationSlice::Slice::SliceSpec] # Output only. Specification for how the data was sliced. class Slice include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Specification for how the data should be sliced. # @!attribute [rw] configs # @return [::Google::Protobuf::Map{::String => ::Google::Cloud::AIPlatform::V1::ModelEvaluationSlice::Slice::SliceSpec::SliceConfig}] # Mapping configuration for this SliceSpec. # The key is the name of the feature. # By default, the key will be prefixed by "instance" as a dictionary # prefix for Vertex Batch Predictions output format. class SliceSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Specification message containing the config for this SliceSpec. # When `kind` is selected as `value` and/or `range`, only a single slice # will be computed. # When `all_values` is present, a separate slice will be computed for # each possible label/value for the corresponding key in `config`. # Examples, with feature zip_code with values 12345, 23334, 88888 and # feature country with values "US", "Canada", "Mexico" in the dataset: # # Example 1: # # { # "zip_code": { "value": { "float_value": 12345.0 } } # } # # A single slice for any data with zip_code 12345 in the dataset. # # Example 2: # # { # "zip_code": { "range": { "low": 12345, "high": 20000 } } # } # # A single slice containing data where the zip_codes between 12345 and # 20000 For this example, data with the zip_code of 12345 will be in this # slice. # # Example 3: # # { # "zip_code": { "range": { "low": 10000, "high": 20000 } }, # "country": { "value": { "string_value": "US" } } # } # # A single slice containing data where the zip_codes between 10000 and # 20000 has the country "US". For this example, data with the zip_code of # 12345 and country "US" will be in this slice. # # Example 4: # # { "country": {"all_values": { "value": true } } } # # Three slices are computed, one for each unique country in the dataset. # # Example 5: # # { # "country": { "all_values": { "value": true } }, # "zip_code": { "value": { "float_value": 12345.0 } } # } # # Three slices are computed, one for each unique country in the dataset # where the zip_code is also 12345. For this example, data with zip_code # 12345 and country "US" will be in one slice, zip_code 12345 and country # "Canada" in another slice, and zip_code 12345 and country "Mexico" in # another slice, totaling 3 slices. # @!attribute [rw] value # @return [::Google::Cloud::AIPlatform::V1::ModelEvaluationSlice::Slice::SliceSpec::Value] # A unique specific value for a given feature. # Example: `{ "value": { "string_value": "12345" } }` # @!attribute [rw] range # @return [::Google::Cloud::AIPlatform::V1::ModelEvaluationSlice::Slice::SliceSpec::Range] # A range of values for a numerical feature. # Example: `{"range":{"low":10000.0,"high":50000.0}}` # will capture 12345 and 23334 in the slice. # @!attribute [rw] all_values # @return [::Google::Protobuf::BoolValue] # If all_values is set to true, then all possible labels of the keyed # feature will have another slice computed. # Example: `{"all_values":{"value":true}}` class SliceConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # A range of values for slice(s). # `low` is inclusive, `high` is exclusive. # @!attribute [rw] low # @return [::Float] # Inclusive low value for the range. # @!attribute [rw] high # @return [::Float] # Exclusive high value for the range. class Range include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Single value that supports strings and floats. # @!attribute [rw] string_value # @return [::String] # String type. # @!attribute [rw] float_value # @return [::Float] # Float type. class Value include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::Google::Cloud::AIPlatform::V1::ModelEvaluationSlice::Slice::SliceSpec::SliceConfig] class ConfigsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end end end |