Class: Google::Cloud::AIPlatform::V1::ModelMonitoringObjectiveConfig
- Inherits:
-
Object
- Object
- Google::Cloud::AIPlatform::V1::ModelMonitoringObjectiveConfig
- Extended by:
- Protobuf::MessageExts::ClassMethods
- Includes:
- Protobuf::MessageExts
- Defined in:
- proto_docs/google/cloud/aiplatform/v1/model_monitoring.rb
Overview
The objective configuration for model monitoring, including the information needed to detect anomalies for one particular model.
Defined Under Namespace
Classes: ExplanationConfig, PredictionDriftDetectionConfig, TrainingDataset, TrainingPredictionSkewDetectionConfig
Instance Attribute Summary collapse
-
#explanation_config ⇒ ::Google::Cloud::AIPlatform::V1::ModelMonitoringObjectiveConfig::ExplanationConfig
The config for integrating with Vertex Explainable AI.
-
#prediction_drift_detection_config ⇒ ::Google::Cloud::AIPlatform::V1::ModelMonitoringObjectiveConfig::PredictionDriftDetectionConfig
The config for drift of prediction data.
-
#training_dataset ⇒ ::Google::Cloud::AIPlatform::V1::ModelMonitoringObjectiveConfig::TrainingDataset
Training dataset for models.
-
#training_prediction_skew_detection_config ⇒ ::Google::Cloud::AIPlatform::V1::ModelMonitoringObjectiveConfig::TrainingPredictionSkewDetectionConfig
The config for skew between training data and prediction data.
Instance Attribute Details
#explanation_config ⇒ ::Google::Cloud::AIPlatform::V1::ModelMonitoringObjectiveConfig::ExplanationConfig
Returns The config for integrating with Vertex Explainable AI.
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
# File 'proto_docs/google/cloud/aiplatform/v1/model_monitoring.rb', line 39 class ModelMonitoringObjectiveConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Training Dataset information. # @!attribute [rw] dataset # @return [::String] # The resource name of the Dataset used to train this Model. # @!attribute [rw] gcs_source # @return [::Google::Cloud::AIPlatform::V1::GcsSource] # The Google Cloud Storage uri of the unmanaged Dataset used to train # this Model. # @!attribute [rw] bigquery_source # @return [::Google::Cloud::AIPlatform::V1::BigQuerySource] # The BigQuery table of the unmanaged Dataset used to train this # Model. # @!attribute [rw] data_format # @return [::String] # Data format of the dataset, only applicable if the input is from # Google Cloud Storage. # The possible formats are: # # "tf-record" # The source file is a TFRecord file. # # "csv" # The source file is a CSV file. # "jsonl" # The source file is a JSONL file. # @!attribute [rw] target_field # @return [::String] # The target field name the model is to predict. # This field will be excluded when doing Predict and (or) Explain for the # training data. # @!attribute [rw] logging_sampling_strategy # @return [::Google::Cloud::AIPlatform::V1::SamplingStrategy] # Strategy to sample data from Training Dataset. # If not set, we process the whole dataset. class TrainingDataset include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The config for Training & Prediction data skew detection. It specifies the # training dataset sources and the skew detection parameters. # @!attribute [rw] skew_thresholds # @return [::Google::Protobuf::Map{::String => ::Google::Cloud::AIPlatform::V1::ThresholdConfig}] # Key is the feature name and value is the threshold. If a feature needs to # be monitored for skew, a value threshold must be configured for that # feature. The threshold here is against feature distribution distance # between the training and prediction feature. # @!attribute [rw] attribution_score_skew_thresholds # @return [::Google::Protobuf::Map{::String => ::Google::Cloud::AIPlatform::V1::ThresholdConfig}] # Key is the feature name and value is the threshold. The threshold here is # against attribution score distance between the training and prediction # feature. # @!attribute [rw] default_skew_threshold # @return [::Google::Cloud::AIPlatform::V1::ThresholdConfig] # Skew anomaly detection threshold used by all features. # When the per-feature thresholds are not set, this field can be used to # specify a threshold for all features. class TrainingPredictionSkewDetectionConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::Google::Cloud::AIPlatform::V1::ThresholdConfig] class SkewThresholdsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::Google::Cloud::AIPlatform::V1::ThresholdConfig] class AttributionScoreSkewThresholdsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # The config for Prediction data drift detection. # @!attribute [rw] drift_thresholds # @return [::Google::Protobuf::Map{::String => ::Google::Cloud::AIPlatform::V1::ThresholdConfig}] # Key is the feature name and value is the threshold. If a feature needs to # be monitored for drift, a value threshold must be configured for that # feature. The threshold here is against feature distribution distance # between different time windws. # @!attribute [rw] attribution_score_drift_thresholds # @return [::Google::Protobuf::Map{::String => ::Google::Cloud::AIPlatform::V1::ThresholdConfig}] # Key is the feature name and value is the threshold. The threshold here is # against attribution score distance between different time windows. # @!attribute [rw] default_drift_threshold # @return [::Google::Cloud::AIPlatform::V1::ThresholdConfig] # Drift anomaly detection threshold used by all features. # When the per-feature thresholds are not set, this field can be used to # specify a threshold for all features. class PredictionDriftDetectionConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::Google::Cloud::AIPlatform::V1::ThresholdConfig] class DriftThresholdsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::Google::Cloud::AIPlatform::V1::ThresholdConfig] class AttributionScoreDriftThresholdsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # The config for integrating with Vertex Explainable AI. Only applicable if # the Model has explanation_spec populated. # @!attribute [rw] enable_feature_attributes # @return [::Boolean] # If want to analyze the Vertex Explainable AI feature attribute scores or # not. If set to true, Vertex AI will log the feature attributions from # explain response and do the skew/drift detection for them. # @!attribute [rw] explanation_baseline # @return [::Google::Cloud::AIPlatform::V1::ModelMonitoringObjectiveConfig::ExplanationConfig::ExplanationBaseline] # Predictions generated by the BatchPredictionJob using baseline dataset. class ExplanationConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Output from # {::Google::Cloud::AIPlatform::V1::BatchPredictionJob BatchPredictionJob} for # Model Monitoring baseline dataset, which can be used to generate baseline # attribution scores. # @!attribute [rw] gcs # @return [::Google::Cloud::AIPlatform::V1::GcsDestination] # Cloud Storage location for BatchExplain output. # @!attribute [rw] bigquery # @return [::Google::Cloud::AIPlatform::V1::BigQueryDestination] # BigQuery location for BatchExplain output. # @!attribute [rw] prediction_format # @return [::Google::Cloud::AIPlatform::V1::ModelMonitoringObjectiveConfig::ExplanationConfig::ExplanationBaseline::PredictionFormat] # The storage format of the predictions generated BatchPrediction job. class ExplanationBaseline include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # The storage format of the predictions generated BatchPrediction job. module PredictionFormat # Should not be set. PREDICTION_FORMAT_UNSPECIFIED = 0 # Predictions are in JSONL files. JSONL = 2 # Predictions are in BigQuery. BIGQUERY = 3 end end end end |
#prediction_drift_detection_config ⇒ ::Google::Cloud::AIPlatform::V1::ModelMonitoringObjectiveConfig::PredictionDriftDetectionConfig
Returns The config for drift of prediction data.
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
# File 'proto_docs/google/cloud/aiplatform/v1/model_monitoring.rb', line 39 class ModelMonitoringObjectiveConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Training Dataset information. # @!attribute [rw] dataset # @return [::String] # The resource name of the Dataset used to train this Model. # @!attribute [rw] gcs_source # @return [::Google::Cloud::AIPlatform::V1::GcsSource] # The Google Cloud Storage uri of the unmanaged Dataset used to train # this Model. # @!attribute [rw] bigquery_source # @return [::Google::Cloud::AIPlatform::V1::BigQuerySource] # The BigQuery table of the unmanaged Dataset used to train this # Model. # @!attribute [rw] data_format # @return [::String] # Data format of the dataset, only applicable if the input is from # Google Cloud Storage. # The possible formats are: # # "tf-record" # The source file is a TFRecord file. # # "csv" # The source file is a CSV file. # "jsonl" # The source file is a JSONL file. # @!attribute [rw] target_field # @return [::String] # The target field name the model is to predict. # This field will be excluded when doing Predict and (or) Explain for the # training data. # @!attribute [rw] logging_sampling_strategy # @return [::Google::Cloud::AIPlatform::V1::SamplingStrategy] # Strategy to sample data from Training Dataset. # If not set, we process the whole dataset. class TrainingDataset include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The config for Training & Prediction data skew detection. It specifies the # training dataset sources and the skew detection parameters. # @!attribute [rw] skew_thresholds # @return [::Google::Protobuf::Map{::String => ::Google::Cloud::AIPlatform::V1::ThresholdConfig}] # Key is the feature name and value is the threshold. If a feature needs to # be monitored for skew, a value threshold must be configured for that # feature. The threshold here is against feature distribution distance # between the training and prediction feature. # @!attribute [rw] attribution_score_skew_thresholds # @return [::Google::Protobuf::Map{::String => ::Google::Cloud::AIPlatform::V1::ThresholdConfig}] # Key is the feature name and value is the threshold. The threshold here is # against attribution score distance between the training and prediction # feature. # @!attribute [rw] default_skew_threshold # @return [::Google::Cloud::AIPlatform::V1::ThresholdConfig] # Skew anomaly detection threshold used by all features. # When the per-feature thresholds are not set, this field can be used to # specify a threshold for all features. class TrainingPredictionSkewDetectionConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::Google::Cloud::AIPlatform::V1::ThresholdConfig] class SkewThresholdsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::Google::Cloud::AIPlatform::V1::ThresholdConfig] class AttributionScoreSkewThresholdsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # The config for Prediction data drift detection. # @!attribute [rw] drift_thresholds # @return [::Google::Protobuf::Map{::String => ::Google::Cloud::AIPlatform::V1::ThresholdConfig}] # Key is the feature name and value is the threshold. If a feature needs to # be monitored for drift, a value threshold must be configured for that # feature. The threshold here is against feature distribution distance # between different time windws. # @!attribute [rw] attribution_score_drift_thresholds # @return [::Google::Protobuf::Map{::String => ::Google::Cloud::AIPlatform::V1::ThresholdConfig}] # Key is the feature name and value is the threshold. The threshold here is # against attribution score distance between different time windows. # @!attribute [rw] default_drift_threshold # @return [::Google::Cloud::AIPlatform::V1::ThresholdConfig] # Drift anomaly detection threshold used by all features. # When the per-feature thresholds are not set, this field can be used to # specify a threshold for all features. class PredictionDriftDetectionConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::Google::Cloud::AIPlatform::V1::ThresholdConfig] class DriftThresholdsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::Google::Cloud::AIPlatform::V1::ThresholdConfig] class AttributionScoreDriftThresholdsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # The config for integrating with Vertex Explainable AI. Only applicable if # the Model has explanation_spec populated. # @!attribute [rw] enable_feature_attributes # @return [::Boolean] # If want to analyze the Vertex Explainable AI feature attribute scores or # not. If set to true, Vertex AI will log the feature attributions from # explain response and do the skew/drift detection for them. # @!attribute [rw] explanation_baseline # @return [::Google::Cloud::AIPlatform::V1::ModelMonitoringObjectiveConfig::ExplanationConfig::ExplanationBaseline] # Predictions generated by the BatchPredictionJob using baseline dataset. class ExplanationConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Output from # {::Google::Cloud::AIPlatform::V1::BatchPredictionJob BatchPredictionJob} for # Model Monitoring baseline dataset, which can be used to generate baseline # attribution scores. # @!attribute [rw] gcs # @return [::Google::Cloud::AIPlatform::V1::GcsDestination] # Cloud Storage location for BatchExplain output. # @!attribute [rw] bigquery # @return [::Google::Cloud::AIPlatform::V1::BigQueryDestination] # BigQuery location for BatchExplain output. # @!attribute [rw] prediction_format # @return [::Google::Cloud::AIPlatform::V1::ModelMonitoringObjectiveConfig::ExplanationConfig::ExplanationBaseline::PredictionFormat] # The storage format of the predictions generated BatchPrediction job. class ExplanationBaseline include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # The storage format of the predictions generated BatchPrediction job. module PredictionFormat # Should not be set. PREDICTION_FORMAT_UNSPECIFIED = 0 # Predictions are in JSONL files. JSONL = 2 # Predictions are in BigQuery. BIGQUERY = 3 end end end end |
#training_dataset ⇒ ::Google::Cloud::AIPlatform::V1::ModelMonitoringObjectiveConfig::TrainingDataset
Returns Training dataset for models. This field has to be set only if TrainingPredictionSkewDetectionConfig is specified.
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
# File 'proto_docs/google/cloud/aiplatform/v1/model_monitoring.rb', line 39 class ModelMonitoringObjectiveConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Training Dataset information. # @!attribute [rw] dataset # @return [::String] # The resource name of the Dataset used to train this Model. # @!attribute [rw] gcs_source # @return [::Google::Cloud::AIPlatform::V1::GcsSource] # The Google Cloud Storage uri of the unmanaged Dataset used to train # this Model. # @!attribute [rw] bigquery_source # @return [::Google::Cloud::AIPlatform::V1::BigQuerySource] # The BigQuery table of the unmanaged Dataset used to train this # Model. # @!attribute [rw] data_format # @return [::String] # Data format of the dataset, only applicable if the input is from # Google Cloud Storage. # The possible formats are: # # "tf-record" # The source file is a TFRecord file. # # "csv" # The source file is a CSV file. # "jsonl" # The source file is a JSONL file. # @!attribute [rw] target_field # @return [::String] # The target field name the model is to predict. # This field will be excluded when doing Predict and (or) Explain for the # training data. # @!attribute [rw] logging_sampling_strategy # @return [::Google::Cloud::AIPlatform::V1::SamplingStrategy] # Strategy to sample data from Training Dataset. # If not set, we process the whole dataset. class TrainingDataset include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The config for Training & Prediction data skew detection. It specifies the # training dataset sources and the skew detection parameters. # @!attribute [rw] skew_thresholds # @return [::Google::Protobuf::Map{::String => ::Google::Cloud::AIPlatform::V1::ThresholdConfig}] # Key is the feature name and value is the threshold. If a feature needs to # be monitored for skew, a value threshold must be configured for that # feature. The threshold here is against feature distribution distance # between the training and prediction feature. # @!attribute [rw] attribution_score_skew_thresholds # @return [::Google::Protobuf::Map{::String => ::Google::Cloud::AIPlatform::V1::ThresholdConfig}] # Key is the feature name and value is the threshold. The threshold here is # against attribution score distance between the training and prediction # feature. # @!attribute [rw] default_skew_threshold # @return [::Google::Cloud::AIPlatform::V1::ThresholdConfig] # Skew anomaly detection threshold used by all features. # When the per-feature thresholds are not set, this field can be used to # specify a threshold for all features. class TrainingPredictionSkewDetectionConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::Google::Cloud::AIPlatform::V1::ThresholdConfig] class SkewThresholdsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::Google::Cloud::AIPlatform::V1::ThresholdConfig] class AttributionScoreSkewThresholdsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # The config for Prediction data drift detection. # @!attribute [rw] drift_thresholds # @return [::Google::Protobuf::Map{::String => ::Google::Cloud::AIPlatform::V1::ThresholdConfig}] # Key is the feature name and value is the threshold. If a feature needs to # be monitored for drift, a value threshold must be configured for that # feature. The threshold here is against feature distribution distance # between different time windws. # @!attribute [rw] attribution_score_drift_thresholds # @return [::Google::Protobuf::Map{::String => ::Google::Cloud::AIPlatform::V1::ThresholdConfig}] # Key is the feature name and value is the threshold. The threshold here is # against attribution score distance between different time windows. # @!attribute [rw] default_drift_threshold # @return [::Google::Cloud::AIPlatform::V1::ThresholdConfig] # Drift anomaly detection threshold used by all features. # When the per-feature thresholds are not set, this field can be used to # specify a threshold for all features. class PredictionDriftDetectionConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::Google::Cloud::AIPlatform::V1::ThresholdConfig] class DriftThresholdsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::Google::Cloud::AIPlatform::V1::ThresholdConfig] class AttributionScoreDriftThresholdsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # The config for integrating with Vertex Explainable AI. Only applicable if # the Model has explanation_spec populated. # @!attribute [rw] enable_feature_attributes # @return [::Boolean] # If want to analyze the Vertex Explainable AI feature attribute scores or # not. If set to true, Vertex AI will log the feature attributions from # explain response and do the skew/drift detection for them. # @!attribute [rw] explanation_baseline # @return [::Google::Cloud::AIPlatform::V1::ModelMonitoringObjectiveConfig::ExplanationConfig::ExplanationBaseline] # Predictions generated by the BatchPredictionJob using baseline dataset. class ExplanationConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Output from # {::Google::Cloud::AIPlatform::V1::BatchPredictionJob BatchPredictionJob} for # Model Monitoring baseline dataset, which can be used to generate baseline # attribution scores. # @!attribute [rw] gcs # @return [::Google::Cloud::AIPlatform::V1::GcsDestination] # Cloud Storage location for BatchExplain output. # @!attribute [rw] bigquery # @return [::Google::Cloud::AIPlatform::V1::BigQueryDestination] # BigQuery location for BatchExplain output. # @!attribute [rw] prediction_format # @return [::Google::Cloud::AIPlatform::V1::ModelMonitoringObjectiveConfig::ExplanationConfig::ExplanationBaseline::PredictionFormat] # The storage format of the predictions generated BatchPrediction job. class ExplanationBaseline include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # The storage format of the predictions generated BatchPrediction job. module PredictionFormat # Should not be set. PREDICTION_FORMAT_UNSPECIFIED = 0 # Predictions are in JSONL files. JSONL = 2 # Predictions are in BigQuery. BIGQUERY = 3 end end end end |
#training_prediction_skew_detection_config ⇒ ::Google::Cloud::AIPlatform::V1::ModelMonitoringObjectiveConfig::TrainingPredictionSkewDetectionConfig
Returns The config for skew between training data and prediction data.
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
# File 'proto_docs/google/cloud/aiplatform/v1/model_monitoring.rb', line 39 class ModelMonitoringObjectiveConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Training Dataset information. # @!attribute [rw] dataset # @return [::String] # The resource name of the Dataset used to train this Model. # @!attribute [rw] gcs_source # @return [::Google::Cloud::AIPlatform::V1::GcsSource] # The Google Cloud Storage uri of the unmanaged Dataset used to train # this Model. # @!attribute [rw] bigquery_source # @return [::Google::Cloud::AIPlatform::V1::BigQuerySource] # The BigQuery table of the unmanaged Dataset used to train this # Model. # @!attribute [rw] data_format # @return [::String] # Data format of the dataset, only applicable if the input is from # Google Cloud Storage. # The possible formats are: # # "tf-record" # The source file is a TFRecord file. # # "csv" # The source file is a CSV file. # "jsonl" # The source file is a JSONL file. # @!attribute [rw] target_field # @return [::String] # The target field name the model is to predict. # This field will be excluded when doing Predict and (or) Explain for the # training data. # @!attribute [rw] logging_sampling_strategy # @return [::Google::Cloud::AIPlatform::V1::SamplingStrategy] # Strategy to sample data from Training Dataset. # If not set, we process the whole dataset. class TrainingDataset include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The config for Training & Prediction data skew detection. It specifies the # training dataset sources and the skew detection parameters. # @!attribute [rw] skew_thresholds # @return [::Google::Protobuf::Map{::String => ::Google::Cloud::AIPlatform::V1::ThresholdConfig}] # Key is the feature name and value is the threshold. If a feature needs to # be monitored for skew, a value threshold must be configured for that # feature. The threshold here is against feature distribution distance # between the training and prediction feature. # @!attribute [rw] attribution_score_skew_thresholds # @return [::Google::Protobuf::Map{::String => ::Google::Cloud::AIPlatform::V1::ThresholdConfig}] # Key is the feature name and value is the threshold. The threshold here is # against attribution score distance between the training and prediction # feature. # @!attribute [rw] default_skew_threshold # @return [::Google::Cloud::AIPlatform::V1::ThresholdConfig] # Skew anomaly detection threshold used by all features. # When the per-feature thresholds are not set, this field can be used to # specify a threshold for all features. class TrainingPredictionSkewDetectionConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::Google::Cloud::AIPlatform::V1::ThresholdConfig] class SkewThresholdsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::Google::Cloud::AIPlatform::V1::ThresholdConfig] class AttributionScoreSkewThresholdsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # The config for Prediction data drift detection. # @!attribute [rw] drift_thresholds # @return [::Google::Protobuf::Map{::String => ::Google::Cloud::AIPlatform::V1::ThresholdConfig}] # Key is the feature name and value is the threshold. If a feature needs to # be monitored for drift, a value threshold must be configured for that # feature. The threshold here is against feature distribution distance # between different time windws. # @!attribute [rw] attribution_score_drift_thresholds # @return [::Google::Protobuf::Map{::String => ::Google::Cloud::AIPlatform::V1::ThresholdConfig}] # Key is the feature name and value is the threshold. The threshold here is # against attribution score distance between different time windows. # @!attribute [rw] default_drift_threshold # @return [::Google::Cloud::AIPlatform::V1::ThresholdConfig] # Drift anomaly detection threshold used by all features. # When the per-feature thresholds are not set, this field can be used to # specify a threshold for all features. class PredictionDriftDetectionConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::Google::Cloud::AIPlatform::V1::ThresholdConfig] class DriftThresholdsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::Google::Cloud::AIPlatform::V1::ThresholdConfig] class AttributionScoreDriftThresholdsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # The config for integrating with Vertex Explainable AI. Only applicable if # the Model has explanation_spec populated. # @!attribute [rw] enable_feature_attributes # @return [::Boolean] # If want to analyze the Vertex Explainable AI feature attribute scores or # not. If set to true, Vertex AI will log the feature attributions from # explain response and do the skew/drift detection for them. # @!attribute [rw] explanation_baseline # @return [::Google::Cloud::AIPlatform::V1::ModelMonitoringObjectiveConfig::ExplanationConfig::ExplanationBaseline] # Predictions generated by the BatchPredictionJob using baseline dataset. class ExplanationConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Output from # {::Google::Cloud::AIPlatform::V1::BatchPredictionJob BatchPredictionJob} for # Model Monitoring baseline dataset, which can be used to generate baseline # attribution scores. # @!attribute [rw] gcs # @return [::Google::Cloud::AIPlatform::V1::GcsDestination] # Cloud Storage location for BatchExplain output. # @!attribute [rw] bigquery # @return [::Google::Cloud::AIPlatform::V1::BigQueryDestination] # BigQuery location for BatchExplain output. # @!attribute [rw] prediction_format # @return [::Google::Cloud::AIPlatform::V1::ModelMonitoringObjectiveConfig::ExplanationConfig::ExplanationBaseline::PredictionFormat] # The storage format of the predictions generated BatchPrediction job. class ExplanationBaseline include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # The storage format of the predictions generated BatchPrediction job. module PredictionFormat # Should not be set. PREDICTION_FORMAT_UNSPECIFIED = 0 # Predictions are in JSONL files. JSONL = 2 # Predictions are in BigQuery. BIGQUERY = 3 end end end end |