Class: Google::Cloud::AIPlatform::V1::NasJobSpec::MultiTrialAlgorithmSpec
- Inherits:
-
Object
- Object
- Google::Cloud::AIPlatform::V1::NasJobSpec::MultiTrialAlgorithmSpec
- Extended by:
- Protobuf::MessageExts::ClassMethods
- Includes:
- Protobuf::MessageExts
- Defined in:
- proto_docs/google/cloud/aiplatform/v1/nas_job.rb
Overview
The spec of multi-trial Neural Architecture Search (NAS).
Defined Under Namespace
Modules: MultiTrialAlgorithm Classes: MetricSpec, SearchTrialSpec, TrainTrialSpec
Instance Attribute Summary collapse
-
#metric ⇒ ::Google::Cloud::AIPlatform::V1::NasJobSpec::MultiTrialAlgorithmSpec::MetricSpec
Metric specs for the NAS job.
-
#multi_trial_algorithm ⇒ ::Google::Cloud::AIPlatform::V1::NasJobSpec::MultiTrialAlgorithmSpec::MultiTrialAlgorithm
The multi-trial Neural Architecture Search (NAS) algorithm type.
-
#search_trial_spec ⇒ ::Google::Cloud::AIPlatform::V1::NasJobSpec::MultiTrialAlgorithmSpec::SearchTrialSpec
Required.
-
#train_trial_spec ⇒ ::Google::Cloud::AIPlatform::V1::NasJobSpec::MultiTrialAlgorithmSpec::TrainTrialSpec
Spec for train trials.
Instance Attribute Details
#metric ⇒ ::Google::Cloud::AIPlatform::V1::NasJobSpec::MultiTrialAlgorithmSpec::MetricSpec
Returns Metric specs for the NAS job.
Validation for this field is done at multi_trial_algorithm_spec
field.
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
# File 'proto_docs/google/cloud/aiplatform/v1/nas_job.rb', line 156 class MultiTrialAlgorithmSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Represents a metric to optimize. # @!attribute [rw] metric_id # @return [::String] # Required. The ID of the metric. Must not contain whitespaces. # @!attribute [rw] goal # @return [::Google::Cloud::AIPlatform::V1::NasJobSpec::MultiTrialAlgorithmSpec::MetricSpec::GoalType] # Required. The optimization goal of the metric. class MetricSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # The available types of optimization goals. module GoalType # Goal Type will default to maximize. GOAL_TYPE_UNSPECIFIED = 0 # Maximize the goal metric. MAXIMIZE = 1 # Minimize the goal metric. MINIMIZE = 2 end end # Represent spec for search trials. # @!attribute [rw] search_trial_job_spec # @return [::Google::Cloud::AIPlatform::V1::CustomJobSpec] # Required. The spec of a search trial job. The same spec applies to # all search trials. # @!attribute [rw] max_trial_count # @return [::Integer] # Required. The maximum number of Neural Architecture Search (NAS) trials # to run. # @!attribute [rw] max_parallel_trial_count # @return [::Integer] # Required. The maximum number of trials to run in parallel. # @!attribute [rw] max_failed_trial_count # @return [::Integer] # The number of failed trials that need to be seen before failing # the NasJob. # # If set to 0, Vertex AI decides how many trials must fail # before the whole job fails. class SearchTrialSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represent spec for train trials. # @!attribute [rw] train_trial_job_spec # @return [::Google::Cloud::AIPlatform::V1::CustomJobSpec] # Required. The spec of a train trial job. The same spec applies to # all train trials. # @!attribute [rw] max_parallel_trial_count # @return [::Integer] # Required. The maximum number of trials to run in parallel. # @!attribute [rw] frequency # @return [::Integer] # Required. Frequency of search trials to start train stage. Top N # [TrainTrialSpec.max_parallel_trial_count] # search trials will be trained for every M # [TrainTrialSpec.frequency] trials searched. class TrainTrialSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The available types of multi-trial algorithms. module MultiTrialAlgorithm # Defaults to `REINFORCEMENT_LEARNING`. MULTI_TRIAL_ALGORITHM_UNSPECIFIED = 0 # The Reinforcement Learning Algorithm for Multi-trial Neural # Architecture Search (NAS). REINFORCEMENT_LEARNING = 1 # The Grid Search Algorithm for Multi-trial Neural # Architecture Search (NAS). GRID_SEARCH = 2 end end |
#multi_trial_algorithm ⇒ ::Google::Cloud::AIPlatform::V1::NasJobSpec::MultiTrialAlgorithmSpec::MultiTrialAlgorithm
Returns The multi-trial Neural Architecture Search (NAS) algorithm
type. Defaults to REINFORCEMENT_LEARNING
.
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
# File 'proto_docs/google/cloud/aiplatform/v1/nas_job.rb', line 156 class MultiTrialAlgorithmSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Represents a metric to optimize. # @!attribute [rw] metric_id # @return [::String] # Required. The ID of the metric. Must not contain whitespaces. # @!attribute [rw] goal # @return [::Google::Cloud::AIPlatform::V1::NasJobSpec::MultiTrialAlgorithmSpec::MetricSpec::GoalType] # Required. The optimization goal of the metric. class MetricSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # The available types of optimization goals. module GoalType # Goal Type will default to maximize. GOAL_TYPE_UNSPECIFIED = 0 # Maximize the goal metric. MAXIMIZE = 1 # Minimize the goal metric. MINIMIZE = 2 end end # Represent spec for search trials. # @!attribute [rw] search_trial_job_spec # @return [::Google::Cloud::AIPlatform::V1::CustomJobSpec] # Required. The spec of a search trial job. The same spec applies to # all search trials. # @!attribute [rw] max_trial_count # @return [::Integer] # Required. The maximum number of Neural Architecture Search (NAS) trials # to run. # @!attribute [rw] max_parallel_trial_count # @return [::Integer] # Required. The maximum number of trials to run in parallel. # @!attribute [rw] max_failed_trial_count # @return [::Integer] # The number of failed trials that need to be seen before failing # the NasJob. # # If set to 0, Vertex AI decides how many trials must fail # before the whole job fails. class SearchTrialSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represent spec for train trials. # @!attribute [rw] train_trial_job_spec # @return [::Google::Cloud::AIPlatform::V1::CustomJobSpec] # Required. The spec of a train trial job. The same spec applies to # all train trials. # @!attribute [rw] max_parallel_trial_count # @return [::Integer] # Required. The maximum number of trials to run in parallel. # @!attribute [rw] frequency # @return [::Integer] # Required. Frequency of search trials to start train stage. Top N # [TrainTrialSpec.max_parallel_trial_count] # search trials will be trained for every M # [TrainTrialSpec.frequency] trials searched. class TrainTrialSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The available types of multi-trial algorithms. module MultiTrialAlgorithm # Defaults to `REINFORCEMENT_LEARNING`. MULTI_TRIAL_ALGORITHM_UNSPECIFIED = 0 # The Reinforcement Learning Algorithm for Multi-trial Neural # Architecture Search (NAS). REINFORCEMENT_LEARNING = 1 # The Grid Search Algorithm for Multi-trial Neural # Architecture Search (NAS). GRID_SEARCH = 2 end end |
#search_trial_spec ⇒ ::Google::Cloud::AIPlatform::V1::NasJobSpec::MultiTrialAlgorithmSpec::SearchTrialSpec
Returns Required. Spec for search trials.
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
# File 'proto_docs/google/cloud/aiplatform/v1/nas_job.rb', line 156 class MultiTrialAlgorithmSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Represents a metric to optimize. # @!attribute [rw] metric_id # @return [::String] # Required. The ID of the metric. Must not contain whitespaces. # @!attribute [rw] goal # @return [::Google::Cloud::AIPlatform::V1::NasJobSpec::MultiTrialAlgorithmSpec::MetricSpec::GoalType] # Required. The optimization goal of the metric. class MetricSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # The available types of optimization goals. module GoalType # Goal Type will default to maximize. GOAL_TYPE_UNSPECIFIED = 0 # Maximize the goal metric. MAXIMIZE = 1 # Minimize the goal metric. MINIMIZE = 2 end end # Represent spec for search trials. # @!attribute [rw] search_trial_job_spec # @return [::Google::Cloud::AIPlatform::V1::CustomJobSpec] # Required. The spec of a search trial job. The same spec applies to # all search trials. # @!attribute [rw] max_trial_count # @return [::Integer] # Required. The maximum number of Neural Architecture Search (NAS) trials # to run. # @!attribute [rw] max_parallel_trial_count # @return [::Integer] # Required. The maximum number of trials to run in parallel. # @!attribute [rw] max_failed_trial_count # @return [::Integer] # The number of failed trials that need to be seen before failing # the NasJob. # # If set to 0, Vertex AI decides how many trials must fail # before the whole job fails. class SearchTrialSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represent spec for train trials. # @!attribute [rw] train_trial_job_spec # @return [::Google::Cloud::AIPlatform::V1::CustomJobSpec] # Required. The spec of a train trial job. The same spec applies to # all train trials. # @!attribute [rw] max_parallel_trial_count # @return [::Integer] # Required. The maximum number of trials to run in parallel. # @!attribute [rw] frequency # @return [::Integer] # Required. Frequency of search trials to start train stage. Top N # [TrainTrialSpec.max_parallel_trial_count] # search trials will be trained for every M # [TrainTrialSpec.frequency] trials searched. class TrainTrialSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The available types of multi-trial algorithms. module MultiTrialAlgorithm # Defaults to `REINFORCEMENT_LEARNING`. MULTI_TRIAL_ALGORITHM_UNSPECIFIED = 0 # The Reinforcement Learning Algorithm for Multi-trial Neural # Architecture Search (NAS). REINFORCEMENT_LEARNING = 1 # The Grid Search Algorithm for Multi-trial Neural # Architecture Search (NAS). GRID_SEARCH = 2 end end |
#train_trial_spec ⇒ ::Google::Cloud::AIPlatform::V1::NasJobSpec::MultiTrialAlgorithmSpec::TrainTrialSpec
Returns Spec for train trials. Top N [TrainTrialSpec.max_parallel_trial_count] search trials will be trained for every M [TrainTrialSpec.frequency] trials searched.
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
# File 'proto_docs/google/cloud/aiplatform/v1/nas_job.rb', line 156 class MultiTrialAlgorithmSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Represents a metric to optimize. # @!attribute [rw] metric_id # @return [::String] # Required. The ID of the metric. Must not contain whitespaces. # @!attribute [rw] goal # @return [::Google::Cloud::AIPlatform::V1::NasJobSpec::MultiTrialAlgorithmSpec::MetricSpec::GoalType] # Required. The optimization goal of the metric. class MetricSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # The available types of optimization goals. module GoalType # Goal Type will default to maximize. GOAL_TYPE_UNSPECIFIED = 0 # Maximize the goal metric. MAXIMIZE = 1 # Minimize the goal metric. MINIMIZE = 2 end end # Represent spec for search trials. # @!attribute [rw] search_trial_job_spec # @return [::Google::Cloud::AIPlatform::V1::CustomJobSpec] # Required. The spec of a search trial job. The same spec applies to # all search trials. # @!attribute [rw] max_trial_count # @return [::Integer] # Required. The maximum number of Neural Architecture Search (NAS) trials # to run. # @!attribute [rw] max_parallel_trial_count # @return [::Integer] # Required. The maximum number of trials to run in parallel. # @!attribute [rw] max_failed_trial_count # @return [::Integer] # The number of failed trials that need to be seen before failing # the NasJob. # # If set to 0, Vertex AI decides how many trials must fail # before the whole job fails. class SearchTrialSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Represent spec for train trials. # @!attribute [rw] train_trial_job_spec # @return [::Google::Cloud::AIPlatform::V1::CustomJobSpec] # Required. The spec of a train trial job. The same spec applies to # all train trials. # @!attribute [rw] max_parallel_trial_count # @return [::Integer] # Required. The maximum number of trials to run in parallel. # @!attribute [rw] frequency # @return [::Integer] # Required. Frequency of search trials to start train stage. Top N # [TrainTrialSpec.max_parallel_trial_count] # search trials will be trained for every M # [TrainTrialSpec.frequency] trials searched. class TrainTrialSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The available types of multi-trial algorithms. module MultiTrialAlgorithm # Defaults to `REINFORCEMENT_LEARNING`. MULTI_TRIAL_ALGORITHM_UNSPECIFIED = 0 # The Reinforcement Learning Algorithm for Multi-trial Neural # Architecture Search (NAS). REINFORCEMENT_LEARNING = 1 # The Grid Search Algorithm for Multi-trial Neural # Architecture Search (NAS). GRID_SEARCH = 2 end end |