Class: Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs
- Inherits:
-
Object
- Object
- Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs
- Extended by:
- Protobuf::MessageExts::ClassMethods
- Includes:
- Protobuf::MessageExts
- Defined in:
- proto_docs/google/cloud/aiplatform/v1/schema/trainingjob/definition/automl_tables.rb
Defined Under Namespace
Classes: Transformation
Instance Attribute Summary collapse
-
#additional_experiments ⇒ ::Array<::String>
Additional experiment flags for the Tables training pipeline.
-
#disable_early_stopping ⇒ ::Boolean
Use the entire training budget.
-
#export_evaluated_data_items_config ⇒ ::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::ExportEvaluatedDataItemsConfig
Configuration for exporting test set predictions to a BigQuery table.
-
#optimization_objective ⇒ ::String
Objective function the model is optimizing towards.
-
#optimization_objective_precision_value ⇒ ::Float
Required when optimization_objective is "maximize-recall-at-precision".
-
#optimization_objective_recall_value ⇒ ::Float
Required when optimization_objective is "maximize-precision-at-recall".
-
#prediction_type ⇒ ::String
The type of prediction the Model is to produce.
-
#target_column ⇒ ::String
The column name of the target column that the model is to predict.
-
#train_budget_milli_node_hours ⇒ ::Integer
Required.
-
#transformations ⇒ ::Array<::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation>
Each transformation will apply transform function to given input column.
-
#weight_column_name ⇒ ::String
Column name that should be used as the weight column.
Instance Attribute Details
#additional_experiments ⇒ ::Array<::String>
Returns Additional experiment flags for the Tables training pipeline.
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
# File 'proto_docs/google/cloud/aiplatform/v1/schema/trainingjob/definition/automl_tables.rb', line 127 class AutoMlTablesInputs include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # @!attribute [rw] auto # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::AutoTransformation] # @!attribute [rw] numeric # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::NumericTransformation] # @!attribute [rw] categorical # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::CategoricalTransformation] # @!attribute [rw] timestamp # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::TimestampTransformation] # @!attribute [rw] text # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::TextTransformation] # @!attribute [rw] repeated_numeric # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::NumericArrayTransformation] # @!attribute [rw] repeated_categorical # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::CategoricalArrayTransformation] # @!attribute [rw] repeated_text # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::TextArrayTransformation] class Transformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Training pipeline will infer the proper transformation based on the # statistic of dataset. # @!attribute [rw] column_name # @return [::String] class AutoTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Training pipeline will perform following transformation functions. # * The value converted to float32. # * The z_score of the value. # * log(value+1) when the value is greater than or equal to 0. Otherwise, # this transformation is not applied and the value is considered a # missing value. # * z_score of log(value+1) when the value is greater than or equal to 0. # Otherwise, this transformation is not applied and the value is # considered a missing value. # * A boolean value that indicates whether the value is valid. # @!attribute [rw] column_name # @return [::String] # @!attribute [rw] invalid_values_allowed # @return [::Boolean] # If invalid values is allowed, the training pipeline will create a # boolean feature that indicated whether the value is valid. # Otherwise, the training pipeline will discard the input row from # trainining data. class NumericTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Training pipeline will perform following transformation functions. # * The categorical string as is--no change to case, punctuation, # spelling, # tense, and so on. # * Convert the category name to a dictionary lookup index and generate an # embedding for each index. # * Categories that appear less than 5 times in the training dataset are # treated as the "unknown" category. The "unknown" category gets its own # special lookup index and resulting embedding. # @!attribute [rw] column_name # @return [::String] class CategoricalTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Training pipeline will perform following transformation functions. # * Apply the transformation functions for Numerical columns. # * Determine the year, month, day,and weekday. Treat each value from the # * timestamp as a Categorical column. # * Invalid numerical values (for example, values that fall outside of a # typical timestamp range, or are extreme values) receive no special # treatment and are not removed. # @!attribute [rw] column_name # @return [::String] # @!attribute [rw] time_format # @return [::String] # The format in which that time field is expressed. The time_format must # either be one of: # * `unix-seconds` # * `unix-milliseconds` # * `unix-microseconds` # * `unix-nanoseconds` # (for respectively number of seconds, milliseconds, microseconds and # nanoseconds since start of the Unix epoch); # or be written in `strftime` syntax. If time_format is not set, then the # default format is RFC 3339 `date-time` format, where # `time-offset` = `"Z"` (e.g. 1985-04-12T23:20:50.52Z) # @!attribute [rw] invalid_values_allowed # @return [::Boolean] # If invalid values is allowed, the training pipeline will create a # boolean feature that indicated whether the value is valid. # Otherwise, the training pipeline will discard the input row from # trainining data. class TimestampTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Training pipeline will perform following transformation functions. # * The text as is--no change to case, punctuation, spelling, tense, and # so # on. # * Tokenize text to words. Convert each words to a dictionary lookup # index # and generate an embedding for each index. Combine the embedding of all # elements into a single embedding using the mean. # * Tokenization is based on unicode script boundaries. # * Missing values get their own lookup index and resulting embedding. # * Stop-words receive no special treatment and are not removed. # @!attribute [rw] column_name # @return [::String] class TextTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Treats the column as numerical array and performs following # transformation functions. # * All transformations for Numerical types applied to the average of the # all elements. # * The average of empty arrays is treated as zero. # @!attribute [rw] column_name # @return [::String] # @!attribute [rw] invalid_values_allowed # @return [::Boolean] # If invalid values is allowed, the training pipeline will create a # boolean feature that indicated whether the value is valid. # Otherwise, the training pipeline will discard the input row from # trainining data. class NumericArrayTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Treats the column as categorical array and performs following # transformation functions. # * For each element in the array, convert the category name to a # dictionary # lookup index and generate an embedding for each index. # Combine the embedding of all elements into a single embedding using # the mean. # * Empty arrays treated as an embedding of zeroes. # @!attribute [rw] column_name # @return [::String] class CategoricalArrayTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Treats the column as text array and performs following transformation # functions. # * Concatenate all text values in the array into a single text value # using # a space (" ") as a delimiter, and then treat the result as a single # text value. Apply the transformations for Text columns. # * Empty arrays treated as an empty text. # @!attribute [rw] column_name # @return [::String] class TextArrayTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end end |
#disable_early_stopping ⇒ ::Boolean
Returns Use the entire training budget. This disables the early stopping feature. By default, the early stopping feature is enabled, which means that AutoML Tables might stop training before the entire training budget has been used.
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
# File 'proto_docs/google/cloud/aiplatform/v1/schema/trainingjob/definition/automl_tables.rb', line 127 class AutoMlTablesInputs include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # @!attribute [rw] auto # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::AutoTransformation] # @!attribute [rw] numeric # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::NumericTransformation] # @!attribute [rw] categorical # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::CategoricalTransformation] # @!attribute [rw] timestamp # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::TimestampTransformation] # @!attribute [rw] text # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::TextTransformation] # @!attribute [rw] repeated_numeric # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::NumericArrayTransformation] # @!attribute [rw] repeated_categorical # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::CategoricalArrayTransformation] # @!attribute [rw] repeated_text # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::TextArrayTransformation] class Transformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Training pipeline will infer the proper transformation based on the # statistic of dataset. # @!attribute [rw] column_name # @return [::String] class AutoTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Training pipeline will perform following transformation functions. # * The value converted to float32. # * The z_score of the value. # * log(value+1) when the value is greater than or equal to 0. Otherwise, # this transformation is not applied and the value is considered a # missing value. # * z_score of log(value+1) when the value is greater than or equal to 0. # Otherwise, this transformation is not applied and the value is # considered a missing value. # * A boolean value that indicates whether the value is valid. # @!attribute [rw] column_name # @return [::String] # @!attribute [rw] invalid_values_allowed # @return [::Boolean] # If invalid values is allowed, the training pipeline will create a # boolean feature that indicated whether the value is valid. # Otherwise, the training pipeline will discard the input row from # trainining data. class NumericTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Training pipeline will perform following transformation functions. # * The categorical string as is--no change to case, punctuation, # spelling, # tense, and so on. # * Convert the category name to a dictionary lookup index and generate an # embedding for each index. # * Categories that appear less than 5 times in the training dataset are # treated as the "unknown" category. The "unknown" category gets its own # special lookup index and resulting embedding. # @!attribute [rw] column_name # @return [::String] class CategoricalTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Training pipeline will perform following transformation functions. # * Apply the transformation functions for Numerical columns. # * Determine the year, month, day,and weekday. Treat each value from the # * timestamp as a Categorical column. # * Invalid numerical values (for example, values that fall outside of a # typical timestamp range, or are extreme values) receive no special # treatment and are not removed. # @!attribute [rw] column_name # @return [::String] # @!attribute [rw] time_format # @return [::String] # The format in which that time field is expressed. The time_format must # either be one of: # * `unix-seconds` # * `unix-milliseconds` # * `unix-microseconds` # * `unix-nanoseconds` # (for respectively number of seconds, milliseconds, microseconds and # nanoseconds since start of the Unix epoch); # or be written in `strftime` syntax. If time_format is not set, then the # default format is RFC 3339 `date-time` format, where # `time-offset` = `"Z"` (e.g. 1985-04-12T23:20:50.52Z) # @!attribute [rw] invalid_values_allowed # @return [::Boolean] # If invalid values is allowed, the training pipeline will create a # boolean feature that indicated whether the value is valid. # Otherwise, the training pipeline will discard the input row from # trainining data. class TimestampTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Training pipeline will perform following transformation functions. # * The text as is--no change to case, punctuation, spelling, tense, and # so # on. # * Tokenize text to words. Convert each words to a dictionary lookup # index # and generate an embedding for each index. Combine the embedding of all # elements into a single embedding using the mean. # * Tokenization is based on unicode script boundaries. # * Missing values get their own lookup index and resulting embedding. # * Stop-words receive no special treatment and are not removed. # @!attribute [rw] column_name # @return [::String] class TextTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Treats the column as numerical array and performs following # transformation functions. # * All transformations for Numerical types applied to the average of the # all elements. # * The average of empty arrays is treated as zero. # @!attribute [rw] column_name # @return [::String] # @!attribute [rw] invalid_values_allowed # @return [::Boolean] # If invalid values is allowed, the training pipeline will create a # boolean feature that indicated whether the value is valid. # Otherwise, the training pipeline will discard the input row from # trainining data. class NumericArrayTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Treats the column as categorical array and performs following # transformation functions. # * For each element in the array, convert the category name to a # dictionary # lookup index and generate an embedding for each index. # Combine the embedding of all elements into a single embedding using # the mean. # * Empty arrays treated as an embedding of zeroes. # @!attribute [rw] column_name # @return [::String] class CategoricalArrayTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Treats the column as text array and performs following transformation # functions. # * Concatenate all text values in the array into a single text value # using # a space (" ") as a delimiter, and then treat the result as a single # text value. Apply the transformations for Text columns. # * Empty arrays treated as an empty text. # @!attribute [rw] column_name # @return [::String] class TextArrayTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end end |
#export_evaluated_data_items_config ⇒ ::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::ExportEvaluatedDataItemsConfig
Returns Configuration for exporting test set predictions to a BigQuery table. If this configuration is absent, then the export is not performed.
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
# File 'proto_docs/google/cloud/aiplatform/v1/schema/trainingjob/definition/automl_tables.rb', line 127 class AutoMlTablesInputs include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # @!attribute [rw] auto # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::AutoTransformation] # @!attribute [rw] numeric # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::NumericTransformation] # @!attribute [rw] categorical # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::CategoricalTransformation] # @!attribute [rw] timestamp # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::TimestampTransformation] # @!attribute [rw] text # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::TextTransformation] # @!attribute [rw] repeated_numeric # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::NumericArrayTransformation] # @!attribute [rw] repeated_categorical # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::CategoricalArrayTransformation] # @!attribute [rw] repeated_text # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::TextArrayTransformation] class Transformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Training pipeline will infer the proper transformation based on the # statistic of dataset. # @!attribute [rw] column_name # @return [::String] class AutoTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Training pipeline will perform following transformation functions. # * The value converted to float32. # * The z_score of the value. # * log(value+1) when the value is greater than or equal to 0. Otherwise, # this transformation is not applied and the value is considered a # missing value. # * z_score of log(value+1) when the value is greater than or equal to 0. # Otherwise, this transformation is not applied and the value is # considered a missing value. # * A boolean value that indicates whether the value is valid. # @!attribute [rw] column_name # @return [::String] # @!attribute [rw] invalid_values_allowed # @return [::Boolean] # If invalid values is allowed, the training pipeline will create a # boolean feature that indicated whether the value is valid. # Otherwise, the training pipeline will discard the input row from # trainining data. class NumericTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Training pipeline will perform following transformation functions. # * The categorical string as is--no change to case, punctuation, # spelling, # tense, and so on. # * Convert the category name to a dictionary lookup index and generate an # embedding for each index. # * Categories that appear less than 5 times in the training dataset are # treated as the "unknown" category. The "unknown" category gets its own # special lookup index and resulting embedding. # @!attribute [rw] column_name # @return [::String] class CategoricalTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Training pipeline will perform following transformation functions. # * Apply the transformation functions for Numerical columns. # * Determine the year, month, day,and weekday. Treat each value from the # * timestamp as a Categorical column. # * Invalid numerical values (for example, values that fall outside of a # typical timestamp range, or are extreme values) receive no special # treatment and are not removed. # @!attribute [rw] column_name # @return [::String] # @!attribute [rw] time_format # @return [::String] # The format in which that time field is expressed. The time_format must # either be one of: # * `unix-seconds` # * `unix-milliseconds` # * `unix-microseconds` # * `unix-nanoseconds` # (for respectively number of seconds, milliseconds, microseconds and # nanoseconds since start of the Unix epoch); # or be written in `strftime` syntax. If time_format is not set, then the # default format is RFC 3339 `date-time` format, where # `time-offset` = `"Z"` (e.g. 1985-04-12T23:20:50.52Z) # @!attribute [rw] invalid_values_allowed # @return [::Boolean] # If invalid values is allowed, the training pipeline will create a # boolean feature that indicated whether the value is valid. # Otherwise, the training pipeline will discard the input row from # trainining data. class TimestampTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Training pipeline will perform following transformation functions. # * The text as is--no change to case, punctuation, spelling, tense, and # so # on. # * Tokenize text to words. Convert each words to a dictionary lookup # index # and generate an embedding for each index. Combine the embedding of all # elements into a single embedding using the mean. # * Tokenization is based on unicode script boundaries. # * Missing values get their own lookup index and resulting embedding. # * Stop-words receive no special treatment and are not removed. # @!attribute [rw] column_name # @return [::String] class TextTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Treats the column as numerical array and performs following # transformation functions. # * All transformations for Numerical types applied to the average of the # all elements. # * The average of empty arrays is treated as zero. # @!attribute [rw] column_name # @return [::String] # @!attribute [rw] invalid_values_allowed # @return [::Boolean] # If invalid values is allowed, the training pipeline will create a # boolean feature that indicated whether the value is valid. # Otherwise, the training pipeline will discard the input row from # trainining data. class NumericArrayTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Treats the column as categorical array and performs following # transformation functions. # * For each element in the array, convert the category name to a # dictionary # lookup index and generate an embedding for each index. # Combine the embedding of all elements into a single embedding using # the mean. # * Empty arrays treated as an embedding of zeroes. # @!attribute [rw] column_name # @return [::String] class CategoricalArrayTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Treats the column as text array and performs following transformation # functions. # * Concatenate all text values in the array into a single text value # using # a space (" ") as a delimiter, and then treat the result as a single # text value. Apply the transformations for Text columns. # * Empty arrays treated as an empty text. # @!attribute [rw] column_name # @return [::String] class TextArrayTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end end |
#optimization_objective ⇒ ::String
Returns Objective function the model is optimizing towards. The training process creates a model that maximizes/minimizes the value of the objective function over the validation set.
The supported optimization objectives depend on the prediction type. If the field is not set, a default objective function is used.
classification (binary): "maximize-au-roc" (default) - Maximize the area under the receiver operating characteristic (ROC) curve. "minimize-log-loss" - Minimize log loss. "maximize-au-prc" - Maximize the area under the precision-recall curve. "maximize-precision-at-recall" - Maximize precision for a specified recall value. "maximize-recall-at-precision" - Maximize recall for a specified precision value.
classification (multi-class): "minimize-log-loss" (default) - Minimize log loss.
regression: "minimize-rmse" (default) - Minimize root-mean-squared error (RMSE). "minimize-mae" - Minimize mean-absolute error (MAE). "minimize-rmsle" - Minimize root-mean-squared log error (RMSLE).
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
# File 'proto_docs/google/cloud/aiplatform/v1/schema/trainingjob/definition/automl_tables.rb', line 127 class AutoMlTablesInputs include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # @!attribute [rw] auto # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::AutoTransformation] # @!attribute [rw] numeric # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::NumericTransformation] # @!attribute [rw] categorical # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::CategoricalTransformation] # @!attribute [rw] timestamp # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::TimestampTransformation] # @!attribute [rw] text # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::TextTransformation] # @!attribute [rw] repeated_numeric # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::NumericArrayTransformation] # @!attribute [rw] repeated_categorical # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::CategoricalArrayTransformation] # @!attribute [rw] repeated_text # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::TextArrayTransformation] class Transformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Training pipeline will infer the proper transformation based on the # statistic of dataset. # @!attribute [rw] column_name # @return [::String] class AutoTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Training pipeline will perform following transformation functions. # * The value converted to float32. # * The z_score of the value. # * log(value+1) when the value is greater than or equal to 0. Otherwise, # this transformation is not applied and the value is considered a # missing value. # * z_score of log(value+1) when the value is greater than or equal to 0. # Otherwise, this transformation is not applied and the value is # considered a missing value. # * A boolean value that indicates whether the value is valid. # @!attribute [rw] column_name # @return [::String] # @!attribute [rw] invalid_values_allowed # @return [::Boolean] # If invalid values is allowed, the training pipeline will create a # boolean feature that indicated whether the value is valid. # Otherwise, the training pipeline will discard the input row from # trainining data. class NumericTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Training pipeline will perform following transformation functions. # * The categorical string as is--no change to case, punctuation, # spelling, # tense, and so on. # * Convert the category name to a dictionary lookup index and generate an # embedding for each index. # * Categories that appear less than 5 times in the training dataset are # treated as the "unknown" category. The "unknown" category gets its own # special lookup index and resulting embedding. # @!attribute [rw] column_name # @return [::String] class CategoricalTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Training pipeline will perform following transformation functions. # * Apply the transformation functions for Numerical columns. # * Determine the year, month, day,and weekday. Treat each value from the # * timestamp as a Categorical column. # * Invalid numerical values (for example, values that fall outside of a # typical timestamp range, or are extreme values) receive no special # treatment and are not removed. # @!attribute [rw] column_name # @return [::String] # @!attribute [rw] time_format # @return [::String] # The format in which that time field is expressed. The time_format must # either be one of: # * `unix-seconds` # * `unix-milliseconds` # * `unix-microseconds` # * `unix-nanoseconds` # (for respectively number of seconds, milliseconds, microseconds and # nanoseconds since start of the Unix epoch); # or be written in `strftime` syntax. If time_format is not set, then the # default format is RFC 3339 `date-time` format, where # `time-offset` = `"Z"` (e.g. 1985-04-12T23:20:50.52Z) # @!attribute [rw] invalid_values_allowed # @return [::Boolean] # If invalid values is allowed, the training pipeline will create a # boolean feature that indicated whether the value is valid. # Otherwise, the training pipeline will discard the input row from # trainining data. class TimestampTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Training pipeline will perform following transformation functions. # * The text as is--no change to case, punctuation, spelling, tense, and # so # on. # * Tokenize text to words. Convert each words to a dictionary lookup # index # and generate an embedding for each index. Combine the embedding of all # elements into a single embedding using the mean. # * Tokenization is based on unicode script boundaries. # * Missing values get their own lookup index and resulting embedding. # * Stop-words receive no special treatment and are not removed. # @!attribute [rw] column_name # @return [::String] class TextTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Treats the column as numerical array and performs following # transformation functions. # * All transformations for Numerical types applied to the average of the # all elements. # * The average of empty arrays is treated as zero. # @!attribute [rw] column_name # @return [::String] # @!attribute [rw] invalid_values_allowed # @return [::Boolean] # If invalid values is allowed, the training pipeline will create a # boolean feature that indicated whether the value is valid. # Otherwise, the training pipeline will discard the input row from # trainining data. class NumericArrayTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Treats the column as categorical array and performs following # transformation functions. # * For each element in the array, convert the category name to a # dictionary # lookup index and generate an embedding for each index. # Combine the embedding of all elements into a single embedding using # the mean. # * Empty arrays treated as an embedding of zeroes. # @!attribute [rw] column_name # @return [::String] class CategoricalArrayTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Treats the column as text array and performs following transformation # functions. # * Concatenate all text values in the array into a single text value # using # a space (" ") as a delimiter, and then treat the result as a single # text value. Apply the transformations for Text columns. # * Empty arrays treated as an empty text. # @!attribute [rw] column_name # @return [::String] class TextArrayTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end end |
#optimization_objective_precision_value ⇒ ::Float
Returns Required when optimization_objective is "maximize-recall-at-precision". Must be between 0 and 1, inclusive.
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
# File 'proto_docs/google/cloud/aiplatform/v1/schema/trainingjob/definition/automl_tables.rb', line 127 class AutoMlTablesInputs include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # @!attribute [rw] auto # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::AutoTransformation] # @!attribute [rw] numeric # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::NumericTransformation] # @!attribute [rw] categorical # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::CategoricalTransformation] # @!attribute [rw] timestamp # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::TimestampTransformation] # @!attribute [rw] text # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::TextTransformation] # @!attribute [rw] repeated_numeric # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::NumericArrayTransformation] # @!attribute [rw] repeated_categorical # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::CategoricalArrayTransformation] # @!attribute [rw] repeated_text # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::TextArrayTransformation] class Transformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Training pipeline will infer the proper transformation based on the # statistic of dataset. # @!attribute [rw] column_name # @return [::String] class AutoTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Training pipeline will perform following transformation functions. # * The value converted to float32. # * The z_score of the value. # * log(value+1) when the value is greater than or equal to 0. Otherwise, # this transformation is not applied and the value is considered a # missing value. # * z_score of log(value+1) when the value is greater than or equal to 0. # Otherwise, this transformation is not applied and the value is # considered a missing value. # * A boolean value that indicates whether the value is valid. # @!attribute [rw] column_name # @return [::String] # @!attribute [rw] invalid_values_allowed # @return [::Boolean] # If invalid values is allowed, the training pipeline will create a # boolean feature that indicated whether the value is valid. # Otherwise, the training pipeline will discard the input row from # trainining data. class NumericTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Training pipeline will perform following transformation functions. # * The categorical string as is--no change to case, punctuation, # spelling, # tense, and so on. # * Convert the category name to a dictionary lookup index and generate an # embedding for each index. # * Categories that appear less than 5 times in the training dataset are # treated as the "unknown" category. The "unknown" category gets its own # special lookup index and resulting embedding. # @!attribute [rw] column_name # @return [::String] class CategoricalTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Training pipeline will perform following transformation functions. # * Apply the transformation functions for Numerical columns. # * Determine the year, month, day,and weekday. Treat each value from the # * timestamp as a Categorical column. # * Invalid numerical values (for example, values that fall outside of a # typical timestamp range, or are extreme values) receive no special # treatment and are not removed. # @!attribute [rw] column_name # @return [::String] # @!attribute [rw] time_format # @return [::String] # The format in which that time field is expressed. The time_format must # either be one of: # * `unix-seconds` # * `unix-milliseconds` # * `unix-microseconds` # * `unix-nanoseconds` # (for respectively number of seconds, milliseconds, microseconds and # nanoseconds since start of the Unix epoch); # or be written in `strftime` syntax. If time_format is not set, then the # default format is RFC 3339 `date-time` format, where # `time-offset` = `"Z"` (e.g. 1985-04-12T23:20:50.52Z) # @!attribute [rw] invalid_values_allowed # @return [::Boolean] # If invalid values is allowed, the training pipeline will create a # boolean feature that indicated whether the value is valid. # Otherwise, the training pipeline will discard the input row from # trainining data. class TimestampTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Training pipeline will perform following transformation functions. # * The text as is--no change to case, punctuation, spelling, tense, and # so # on. # * Tokenize text to words. Convert each words to a dictionary lookup # index # and generate an embedding for each index. Combine the embedding of all # elements into a single embedding using the mean. # * Tokenization is based on unicode script boundaries. # * Missing values get their own lookup index and resulting embedding. # * Stop-words receive no special treatment and are not removed. # @!attribute [rw] column_name # @return [::String] class TextTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Treats the column as numerical array and performs following # transformation functions. # * All transformations for Numerical types applied to the average of the # all elements. # * The average of empty arrays is treated as zero. # @!attribute [rw] column_name # @return [::String] # @!attribute [rw] invalid_values_allowed # @return [::Boolean] # If invalid values is allowed, the training pipeline will create a # boolean feature that indicated whether the value is valid. # Otherwise, the training pipeline will discard the input row from # trainining data. class NumericArrayTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Treats the column as categorical array and performs following # transformation functions. # * For each element in the array, convert the category name to a # dictionary # lookup index and generate an embedding for each index. # Combine the embedding of all elements into a single embedding using # the mean. # * Empty arrays treated as an embedding of zeroes. # @!attribute [rw] column_name # @return [::String] class CategoricalArrayTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Treats the column as text array and performs following transformation # functions. # * Concatenate all text values in the array into a single text value # using # a space (" ") as a delimiter, and then treat the result as a single # text value. Apply the transformations for Text columns. # * Empty arrays treated as an empty text. # @!attribute [rw] column_name # @return [::String] class TextArrayTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end end |
#optimization_objective_recall_value ⇒ ::Float
Returns Required when optimization_objective is "maximize-precision-at-recall". Must be between 0 and 1, inclusive.
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
# File 'proto_docs/google/cloud/aiplatform/v1/schema/trainingjob/definition/automl_tables.rb', line 127 class AutoMlTablesInputs include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # @!attribute [rw] auto # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::AutoTransformation] # @!attribute [rw] numeric # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::NumericTransformation] # @!attribute [rw] categorical # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::CategoricalTransformation] # @!attribute [rw] timestamp # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::TimestampTransformation] # @!attribute [rw] text # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::TextTransformation] # @!attribute [rw] repeated_numeric # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::NumericArrayTransformation] # @!attribute [rw] repeated_categorical # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::CategoricalArrayTransformation] # @!attribute [rw] repeated_text # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::TextArrayTransformation] class Transformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Training pipeline will infer the proper transformation based on the # statistic of dataset. # @!attribute [rw] column_name # @return [::String] class AutoTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Training pipeline will perform following transformation functions. # * The value converted to float32. # * The z_score of the value. # * log(value+1) when the value is greater than or equal to 0. Otherwise, # this transformation is not applied and the value is considered a # missing value. # * z_score of log(value+1) when the value is greater than or equal to 0. # Otherwise, this transformation is not applied and the value is # considered a missing value. # * A boolean value that indicates whether the value is valid. # @!attribute [rw] column_name # @return [::String] # @!attribute [rw] invalid_values_allowed # @return [::Boolean] # If invalid values is allowed, the training pipeline will create a # boolean feature that indicated whether the value is valid. # Otherwise, the training pipeline will discard the input row from # trainining data. class NumericTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Training pipeline will perform following transformation functions. # * The categorical string as is--no change to case, punctuation, # spelling, # tense, and so on. # * Convert the category name to a dictionary lookup index and generate an # embedding for each index. # * Categories that appear less than 5 times in the training dataset are # treated as the "unknown" category. The "unknown" category gets its own # special lookup index and resulting embedding. # @!attribute [rw] column_name # @return [::String] class CategoricalTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Training pipeline will perform following transformation functions. # * Apply the transformation functions for Numerical columns. # * Determine the year, month, day,and weekday. Treat each value from the # * timestamp as a Categorical column. # * Invalid numerical values (for example, values that fall outside of a # typical timestamp range, or are extreme values) receive no special # treatment and are not removed. # @!attribute [rw] column_name # @return [::String] # @!attribute [rw] time_format # @return [::String] # The format in which that time field is expressed. The time_format must # either be one of: # * `unix-seconds` # * `unix-milliseconds` # * `unix-microseconds` # * `unix-nanoseconds` # (for respectively number of seconds, milliseconds, microseconds and # nanoseconds since start of the Unix epoch); # or be written in `strftime` syntax. If time_format is not set, then the # default format is RFC 3339 `date-time` format, where # `time-offset` = `"Z"` (e.g. 1985-04-12T23:20:50.52Z) # @!attribute [rw] invalid_values_allowed # @return [::Boolean] # If invalid values is allowed, the training pipeline will create a # boolean feature that indicated whether the value is valid. # Otherwise, the training pipeline will discard the input row from # trainining data. class TimestampTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Training pipeline will perform following transformation functions. # * The text as is--no change to case, punctuation, spelling, tense, and # so # on. # * Tokenize text to words. Convert each words to a dictionary lookup # index # and generate an embedding for each index. Combine the embedding of all # elements into a single embedding using the mean. # * Tokenization is based on unicode script boundaries. # * Missing values get their own lookup index and resulting embedding. # * Stop-words receive no special treatment and are not removed. # @!attribute [rw] column_name # @return [::String] class TextTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Treats the column as numerical array and performs following # transformation functions. # * All transformations for Numerical types applied to the average of the # all elements. # * The average of empty arrays is treated as zero. # @!attribute [rw] column_name # @return [::String] # @!attribute [rw] invalid_values_allowed # @return [::Boolean] # If invalid values is allowed, the training pipeline will create a # boolean feature that indicated whether the value is valid. # Otherwise, the training pipeline will discard the input row from # trainining data. class NumericArrayTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Treats the column as categorical array and performs following # transformation functions. # * For each element in the array, convert the category name to a # dictionary # lookup index and generate an embedding for each index. # Combine the embedding of all elements into a single embedding using # the mean. # * Empty arrays treated as an embedding of zeroes. # @!attribute [rw] column_name # @return [::String] class CategoricalArrayTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Treats the column as text array and performs following transformation # functions. # * Concatenate all text values in the array into a single text value # using # a space (" ") as a delimiter, and then treat the result as a single # text value. Apply the transformations for Text columns. # * Empty arrays treated as an empty text. # @!attribute [rw] column_name # @return [::String] class TextArrayTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end end |
#prediction_type ⇒ ::String
Returns The type of prediction the Model is to produce. "classification" - Predict one out of multiple target values is picked for each row. "regression" - Predict a value based on its relation to other values. This type is available only to columns that contain semantically numeric values, i.e. integers or floating point number, even if stored as e.g. strings.
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
# File 'proto_docs/google/cloud/aiplatform/v1/schema/trainingjob/definition/automl_tables.rb', line 127 class AutoMlTablesInputs include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # @!attribute [rw] auto # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::AutoTransformation] # @!attribute [rw] numeric # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::NumericTransformation] # @!attribute [rw] categorical # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::CategoricalTransformation] # @!attribute [rw] timestamp # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::TimestampTransformation] # @!attribute [rw] text # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::TextTransformation] # @!attribute [rw] repeated_numeric # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::NumericArrayTransformation] # @!attribute [rw] repeated_categorical # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::CategoricalArrayTransformation] # @!attribute [rw] repeated_text # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::TextArrayTransformation] class Transformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Training pipeline will infer the proper transformation based on the # statistic of dataset. # @!attribute [rw] column_name # @return [::String] class AutoTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Training pipeline will perform following transformation functions. # * The value converted to float32. # * The z_score of the value. # * log(value+1) when the value is greater than or equal to 0. Otherwise, # this transformation is not applied and the value is considered a # missing value. # * z_score of log(value+1) when the value is greater than or equal to 0. # Otherwise, this transformation is not applied and the value is # considered a missing value. # * A boolean value that indicates whether the value is valid. # @!attribute [rw] column_name # @return [::String] # @!attribute [rw] invalid_values_allowed # @return [::Boolean] # If invalid values is allowed, the training pipeline will create a # boolean feature that indicated whether the value is valid. # Otherwise, the training pipeline will discard the input row from # trainining data. class NumericTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Training pipeline will perform following transformation functions. # * The categorical string as is--no change to case, punctuation, # spelling, # tense, and so on. # * Convert the category name to a dictionary lookup index and generate an # embedding for each index. # * Categories that appear less than 5 times in the training dataset are # treated as the "unknown" category. The "unknown" category gets its own # special lookup index and resulting embedding. # @!attribute [rw] column_name # @return [::String] class CategoricalTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Training pipeline will perform following transformation functions. # * Apply the transformation functions for Numerical columns. # * Determine the year, month, day,and weekday. Treat each value from the # * timestamp as a Categorical column. # * Invalid numerical values (for example, values that fall outside of a # typical timestamp range, or are extreme values) receive no special # treatment and are not removed. # @!attribute [rw] column_name # @return [::String] # @!attribute [rw] time_format # @return [::String] # The format in which that time field is expressed. The time_format must # either be one of: # * `unix-seconds` # * `unix-milliseconds` # * `unix-microseconds` # * `unix-nanoseconds` # (for respectively number of seconds, milliseconds, microseconds and # nanoseconds since start of the Unix epoch); # or be written in `strftime` syntax. If time_format is not set, then the # default format is RFC 3339 `date-time` format, where # `time-offset` = `"Z"` (e.g. 1985-04-12T23:20:50.52Z) # @!attribute [rw] invalid_values_allowed # @return [::Boolean] # If invalid values is allowed, the training pipeline will create a # boolean feature that indicated whether the value is valid. # Otherwise, the training pipeline will discard the input row from # trainining data. class TimestampTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Training pipeline will perform following transformation functions. # * The text as is--no change to case, punctuation, spelling, tense, and # so # on. # * Tokenize text to words. Convert each words to a dictionary lookup # index # and generate an embedding for each index. Combine the embedding of all # elements into a single embedding using the mean. # * Tokenization is based on unicode script boundaries. # * Missing values get their own lookup index and resulting embedding. # * Stop-words receive no special treatment and are not removed. # @!attribute [rw] column_name # @return [::String] class TextTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Treats the column as numerical array and performs following # transformation functions. # * All transformations for Numerical types applied to the average of the # all elements. # * The average of empty arrays is treated as zero. # @!attribute [rw] column_name # @return [::String] # @!attribute [rw] invalid_values_allowed # @return [::Boolean] # If invalid values is allowed, the training pipeline will create a # boolean feature that indicated whether the value is valid. # Otherwise, the training pipeline will discard the input row from # trainining data. class NumericArrayTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Treats the column as categorical array and performs following # transformation functions. # * For each element in the array, convert the category name to a # dictionary # lookup index and generate an embedding for each index. # Combine the embedding of all elements into a single embedding using # the mean. # * Empty arrays treated as an embedding of zeroes. # @!attribute [rw] column_name # @return [::String] class CategoricalArrayTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Treats the column as text array and performs following transformation # functions. # * Concatenate all text values in the array into a single text value # using # a space (" ") as a delimiter, and then treat the result as a single # text value. Apply the transformations for Text columns. # * Empty arrays treated as an empty text. # @!attribute [rw] column_name # @return [::String] class TextArrayTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end end |
#target_column ⇒ ::String
Returns The column name of the target column that the model is to predict.
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
# File 'proto_docs/google/cloud/aiplatform/v1/schema/trainingjob/definition/automl_tables.rb', line 127 class AutoMlTablesInputs include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # @!attribute [rw] auto # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::AutoTransformation] # @!attribute [rw] numeric # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::NumericTransformation] # @!attribute [rw] categorical # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::CategoricalTransformation] # @!attribute [rw] timestamp # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::TimestampTransformation] # @!attribute [rw] text # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::TextTransformation] # @!attribute [rw] repeated_numeric # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::NumericArrayTransformation] # @!attribute [rw] repeated_categorical # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::CategoricalArrayTransformation] # @!attribute [rw] repeated_text # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::TextArrayTransformation] class Transformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Training pipeline will infer the proper transformation based on the # statistic of dataset. # @!attribute [rw] column_name # @return [::String] class AutoTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Training pipeline will perform following transformation functions. # * The value converted to float32. # * The z_score of the value. # * log(value+1) when the value is greater than or equal to 0. Otherwise, # this transformation is not applied and the value is considered a # missing value. # * z_score of log(value+1) when the value is greater than or equal to 0. # Otherwise, this transformation is not applied and the value is # considered a missing value. # * A boolean value that indicates whether the value is valid. # @!attribute [rw] column_name # @return [::String] # @!attribute [rw] invalid_values_allowed # @return [::Boolean] # If invalid values is allowed, the training pipeline will create a # boolean feature that indicated whether the value is valid. # Otherwise, the training pipeline will discard the input row from # trainining data. class NumericTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Training pipeline will perform following transformation functions. # * The categorical string as is--no change to case, punctuation, # spelling, # tense, and so on. # * Convert the category name to a dictionary lookup index and generate an # embedding for each index. # * Categories that appear less than 5 times in the training dataset are # treated as the "unknown" category. The "unknown" category gets its own # special lookup index and resulting embedding. # @!attribute [rw] column_name # @return [::String] class CategoricalTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Training pipeline will perform following transformation functions. # * Apply the transformation functions for Numerical columns. # * Determine the year, month, day,and weekday. Treat each value from the # * timestamp as a Categorical column. # * Invalid numerical values (for example, values that fall outside of a # typical timestamp range, or are extreme values) receive no special # treatment and are not removed. # @!attribute [rw] column_name # @return [::String] # @!attribute [rw] time_format # @return [::String] # The format in which that time field is expressed. The time_format must # either be one of: # * `unix-seconds` # * `unix-milliseconds` # * `unix-microseconds` # * `unix-nanoseconds` # (for respectively number of seconds, milliseconds, microseconds and # nanoseconds since start of the Unix epoch); # or be written in `strftime` syntax. If time_format is not set, then the # default format is RFC 3339 `date-time` format, where # `time-offset` = `"Z"` (e.g. 1985-04-12T23:20:50.52Z) # @!attribute [rw] invalid_values_allowed # @return [::Boolean] # If invalid values is allowed, the training pipeline will create a # boolean feature that indicated whether the value is valid. # Otherwise, the training pipeline will discard the input row from # trainining data. class TimestampTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Training pipeline will perform following transformation functions. # * The text as is--no change to case, punctuation, spelling, tense, and # so # on. # * Tokenize text to words. Convert each words to a dictionary lookup # index # and generate an embedding for each index. Combine the embedding of all # elements into a single embedding using the mean. # * Tokenization is based on unicode script boundaries. # * Missing values get their own lookup index and resulting embedding. # * Stop-words receive no special treatment and are not removed. # @!attribute [rw] column_name # @return [::String] class TextTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Treats the column as numerical array and performs following # transformation functions. # * All transformations for Numerical types applied to the average of the # all elements. # * The average of empty arrays is treated as zero. # @!attribute [rw] column_name # @return [::String] # @!attribute [rw] invalid_values_allowed # @return [::Boolean] # If invalid values is allowed, the training pipeline will create a # boolean feature that indicated whether the value is valid. # Otherwise, the training pipeline will discard the input row from # trainining data. class NumericArrayTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Treats the column as categorical array and performs following # transformation functions. # * For each element in the array, convert the category name to a # dictionary # lookup index and generate an embedding for each index. # Combine the embedding of all elements into a single embedding using # the mean. # * Empty arrays treated as an embedding of zeroes. # @!attribute [rw] column_name # @return [::String] class CategoricalArrayTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Treats the column as text array and performs following transformation # functions. # * Concatenate all text values in the array into a single text value # using # a space (" ") as a delimiter, and then treat the result as a single # text value. Apply the transformations for Text columns. # * Empty arrays treated as an empty text. # @!attribute [rw] column_name # @return [::String] class TextArrayTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end end |
#train_budget_milli_node_hours ⇒ ::Integer
Returns Required. The train budget of creating this model, expressed in milli node hours i.e. 1,000 value in this field means 1 node hour.
The training cost of the model will not exceed this budget. The final cost will be attempted to be close to the budget, though may end up being (even) noticeably smaller - at the backend's discretion. This especially may happen when further model training ceases to provide any improvements.
If the budget is set to a value known to be insufficient to train a model for the given dataset, the training won't be attempted and will error.
The train budget must be between 1,000 and 72,000 milli node hours, inclusive.
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
# File 'proto_docs/google/cloud/aiplatform/v1/schema/trainingjob/definition/automl_tables.rb', line 127 class AutoMlTablesInputs include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # @!attribute [rw] auto # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::AutoTransformation] # @!attribute [rw] numeric # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::NumericTransformation] # @!attribute [rw] categorical # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::CategoricalTransformation] # @!attribute [rw] timestamp # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::TimestampTransformation] # @!attribute [rw] text # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::TextTransformation] # @!attribute [rw] repeated_numeric # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::NumericArrayTransformation] # @!attribute [rw] repeated_categorical # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::CategoricalArrayTransformation] # @!attribute [rw] repeated_text # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::TextArrayTransformation] class Transformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Training pipeline will infer the proper transformation based on the # statistic of dataset. # @!attribute [rw] column_name # @return [::String] class AutoTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Training pipeline will perform following transformation functions. # * The value converted to float32. # * The z_score of the value. # * log(value+1) when the value is greater than or equal to 0. Otherwise, # this transformation is not applied and the value is considered a # missing value. # * z_score of log(value+1) when the value is greater than or equal to 0. # Otherwise, this transformation is not applied and the value is # considered a missing value. # * A boolean value that indicates whether the value is valid. # @!attribute [rw] column_name # @return [::String] # @!attribute [rw] invalid_values_allowed # @return [::Boolean] # If invalid values is allowed, the training pipeline will create a # boolean feature that indicated whether the value is valid. # Otherwise, the training pipeline will discard the input row from # trainining data. class NumericTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Training pipeline will perform following transformation functions. # * The categorical string as is--no change to case, punctuation, # spelling, # tense, and so on. # * Convert the category name to a dictionary lookup index and generate an # embedding for each index. # * Categories that appear less than 5 times in the training dataset are # treated as the "unknown" category. The "unknown" category gets its own # special lookup index and resulting embedding. # @!attribute [rw] column_name # @return [::String] class CategoricalTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Training pipeline will perform following transformation functions. # * Apply the transformation functions for Numerical columns. # * Determine the year, month, day,and weekday. Treat each value from the # * timestamp as a Categorical column. # * Invalid numerical values (for example, values that fall outside of a # typical timestamp range, or are extreme values) receive no special # treatment and are not removed. # @!attribute [rw] column_name # @return [::String] # @!attribute [rw] time_format # @return [::String] # The format in which that time field is expressed. The time_format must # either be one of: # * `unix-seconds` # * `unix-milliseconds` # * `unix-microseconds` # * `unix-nanoseconds` # (for respectively number of seconds, milliseconds, microseconds and # nanoseconds since start of the Unix epoch); # or be written in `strftime` syntax. If time_format is not set, then the # default format is RFC 3339 `date-time` format, where # `time-offset` = `"Z"` (e.g. 1985-04-12T23:20:50.52Z) # @!attribute [rw] invalid_values_allowed # @return [::Boolean] # If invalid values is allowed, the training pipeline will create a # boolean feature that indicated whether the value is valid. # Otherwise, the training pipeline will discard the input row from # trainining data. class TimestampTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Training pipeline will perform following transformation functions. # * The text as is--no change to case, punctuation, spelling, tense, and # so # on. # * Tokenize text to words. Convert each words to a dictionary lookup # index # and generate an embedding for each index. Combine the embedding of all # elements into a single embedding using the mean. # * Tokenization is based on unicode script boundaries. # * Missing values get their own lookup index and resulting embedding. # * Stop-words receive no special treatment and are not removed. # @!attribute [rw] column_name # @return [::String] class TextTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Treats the column as numerical array and performs following # transformation functions. # * All transformations for Numerical types applied to the average of the # all elements. # * The average of empty arrays is treated as zero. # @!attribute [rw] column_name # @return [::String] # @!attribute [rw] invalid_values_allowed # @return [::Boolean] # If invalid values is allowed, the training pipeline will create a # boolean feature that indicated whether the value is valid. # Otherwise, the training pipeline will discard the input row from # trainining data. class NumericArrayTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Treats the column as categorical array and performs following # transformation functions. # * For each element in the array, convert the category name to a # dictionary # lookup index and generate an embedding for each index. # Combine the embedding of all elements into a single embedding using # the mean. # * Empty arrays treated as an embedding of zeroes. # @!attribute [rw] column_name # @return [::String] class CategoricalArrayTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Treats the column as text array and performs following transformation # functions. # * Concatenate all text values in the array into a single text value # using # a space (" ") as a delimiter, and then treat the result as a single # text value. Apply the transformations for Text columns. # * Empty arrays treated as an empty text. # @!attribute [rw] column_name # @return [::String] class TextArrayTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end end |
#transformations ⇒ ::Array<::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation>
Returns Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using "." as the delimiter.
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
# File 'proto_docs/google/cloud/aiplatform/v1/schema/trainingjob/definition/automl_tables.rb', line 127 class AutoMlTablesInputs include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # @!attribute [rw] auto # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::AutoTransformation] # @!attribute [rw] numeric # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::NumericTransformation] # @!attribute [rw] categorical # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::CategoricalTransformation] # @!attribute [rw] timestamp # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::TimestampTransformation] # @!attribute [rw] text # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::TextTransformation] # @!attribute [rw] repeated_numeric # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::NumericArrayTransformation] # @!attribute [rw] repeated_categorical # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::CategoricalArrayTransformation] # @!attribute [rw] repeated_text # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::TextArrayTransformation] class Transformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Training pipeline will infer the proper transformation based on the # statistic of dataset. # @!attribute [rw] column_name # @return [::String] class AutoTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Training pipeline will perform following transformation functions. # * The value converted to float32. # * The z_score of the value. # * log(value+1) when the value is greater than or equal to 0. Otherwise, # this transformation is not applied and the value is considered a # missing value. # * z_score of log(value+1) when the value is greater than or equal to 0. # Otherwise, this transformation is not applied and the value is # considered a missing value. # * A boolean value that indicates whether the value is valid. # @!attribute [rw] column_name # @return [::String] # @!attribute [rw] invalid_values_allowed # @return [::Boolean] # If invalid values is allowed, the training pipeline will create a # boolean feature that indicated whether the value is valid. # Otherwise, the training pipeline will discard the input row from # trainining data. class NumericTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Training pipeline will perform following transformation functions. # * The categorical string as is--no change to case, punctuation, # spelling, # tense, and so on. # * Convert the category name to a dictionary lookup index and generate an # embedding for each index. # * Categories that appear less than 5 times in the training dataset are # treated as the "unknown" category. The "unknown" category gets its own # special lookup index and resulting embedding. # @!attribute [rw] column_name # @return [::String] class CategoricalTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Training pipeline will perform following transformation functions. # * Apply the transformation functions for Numerical columns. # * Determine the year, month, day,and weekday. Treat each value from the # * timestamp as a Categorical column. # * Invalid numerical values (for example, values that fall outside of a # typical timestamp range, or are extreme values) receive no special # treatment and are not removed. # @!attribute [rw] column_name # @return [::String] # @!attribute [rw] time_format # @return [::String] # The format in which that time field is expressed. The time_format must # either be one of: # * `unix-seconds` # * `unix-milliseconds` # * `unix-microseconds` # * `unix-nanoseconds` # (for respectively number of seconds, milliseconds, microseconds and # nanoseconds since start of the Unix epoch); # or be written in `strftime` syntax. If time_format is not set, then the # default format is RFC 3339 `date-time` format, where # `time-offset` = `"Z"` (e.g. 1985-04-12T23:20:50.52Z) # @!attribute [rw] invalid_values_allowed # @return [::Boolean] # If invalid values is allowed, the training pipeline will create a # boolean feature that indicated whether the value is valid. # Otherwise, the training pipeline will discard the input row from # trainining data. class TimestampTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Training pipeline will perform following transformation functions. # * The text as is--no change to case, punctuation, spelling, tense, and # so # on. # * Tokenize text to words. Convert each words to a dictionary lookup # index # and generate an embedding for each index. Combine the embedding of all # elements into a single embedding using the mean. # * Tokenization is based on unicode script boundaries. # * Missing values get their own lookup index and resulting embedding. # * Stop-words receive no special treatment and are not removed. # @!attribute [rw] column_name # @return [::String] class TextTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Treats the column as numerical array and performs following # transformation functions. # * All transformations for Numerical types applied to the average of the # all elements. # * The average of empty arrays is treated as zero. # @!attribute [rw] column_name # @return [::String] # @!attribute [rw] invalid_values_allowed # @return [::Boolean] # If invalid values is allowed, the training pipeline will create a # boolean feature that indicated whether the value is valid. # Otherwise, the training pipeline will discard the input row from # trainining data. class NumericArrayTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Treats the column as categorical array and performs following # transformation functions. # * For each element in the array, convert the category name to a # dictionary # lookup index and generate an embedding for each index. # Combine the embedding of all elements into a single embedding using # the mean. # * Empty arrays treated as an embedding of zeroes. # @!attribute [rw] column_name # @return [::String] class CategoricalArrayTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Treats the column as text array and performs following transformation # functions. # * Concatenate all text values in the array into a single text value # using # a space (" ") as a delimiter, and then treat the result as a single # text value. Apply the transformations for Text columns. # * Empty arrays treated as an empty text. # @!attribute [rw] column_name # @return [::String] class TextArrayTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end end |
#weight_column_name ⇒ ::String
Returns Column name that should be used as the weight column. Higher values in this column give more importance to the row during model training. The column must have numeric values between 0 and 10000 inclusively; 0 means the row is ignored for training. If weight column field is not set, then all rows are assumed to have equal weight of 1.
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
# File 'proto_docs/google/cloud/aiplatform/v1/schema/trainingjob/definition/automl_tables.rb', line 127 class AutoMlTablesInputs include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # @!attribute [rw] auto # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::AutoTransformation] # @!attribute [rw] numeric # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::NumericTransformation] # @!attribute [rw] categorical # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::CategoricalTransformation] # @!attribute [rw] timestamp # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::TimestampTransformation] # @!attribute [rw] text # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::TextTransformation] # @!attribute [rw] repeated_numeric # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::NumericArrayTransformation] # @!attribute [rw] repeated_categorical # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::CategoricalArrayTransformation] # @!attribute [rw] repeated_text # @return [::Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::TextArrayTransformation] class Transformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Training pipeline will infer the proper transformation based on the # statistic of dataset. # @!attribute [rw] column_name # @return [::String] class AutoTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Training pipeline will perform following transformation functions. # * The value converted to float32. # * The z_score of the value. # * log(value+1) when the value is greater than or equal to 0. Otherwise, # this transformation is not applied and the value is considered a # missing value. # * z_score of log(value+1) when the value is greater than or equal to 0. # Otherwise, this transformation is not applied and the value is # considered a missing value. # * A boolean value that indicates whether the value is valid. # @!attribute [rw] column_name # @return [::String] # @!attribute [rw] invalid_values_allowed # @return [::Boolean] # If invalid values is allowed, the training pipeline will create a # boolean feature that indicated whether the value is valid. # Otherwise, the training pipeline will discard the input row from # trainining data. class NumericTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Training pipeline will perform following transformation functions. # * The categorical string as is--no change to case, punctuation, # spelling, # tense, and so on. # * Convert the category name to a dictionary lookup index and generate an # embedding for each index. # * Categories that appear less than 5 times in the training dataset are # treated as the "unknown" category. The "unknown" category gets its own # special lookup index and resulting embedding. # @!attribute [rw] column_name # @return [::String] class CategoricalTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Training pipeline will perform following transformation functions. # * Apply the transformation functions for Numerical columns. # * Determine the year, month, day,and weekday. Treat each value from the # * timestamp as a Categorical column. # * Invalid numerical values (for example, values that fall outside of a # typical timestamp range, or are extreme values) receive no special # treatment and are not removed. # @!attribute [rw] column_name # @return [::String] # @!attribute [rw] time_format # @return [::String] # The format in which that time field is expressed. The time_format must # either be one of: # * `unix-seconds` # * `unix-milliseconds` # * `unix-microseconds` # * `unix-nanoseconds` # (for respectively number of seconds, milliseconds, microseconds and # nanoseconds since start of the Unix epoch); # or be written in `strftime` syntax. If time_format is not set, then the # default format is RFC 3339 `date-time` format, where # `time-offset` = `"Z"` (e.g. 1985-04-12T23:20:50.52Z) # @!attribute [rw] invalid_values_allowed # @return [::Boolean] # If invalid values is allowed, the training pipeline will create a # boolean feature that indicated whether the value is valid. # Otherwise, the training pipeline will discard the input row from # trainining data. class TimestampTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Training pipeline will perform following transformation functions. # * The text as is--no change to case, punctuation, spelling, tense, and # so # on. # * Tokenize text to words. Convert each words to a dictionary lookup # index # and generate an embedding for each index. Combine the embedding of all # elements into a single embedding using the mean. # * Tokenization is based on unicode script boundaries. # * Missing values get their own lookup index and resulting embedding. # * Stop-words receive no special treatment and are not removed. # @!attribute [rw] column_name # @return [::String] class TextTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Treats the column as numerical array and performs following # transformation functions. # * All transformations for Numerical types applied to the average of the # all elements. # * The average of empty arrays is treated as zero. # @!attribute [rw] column_name # @return [::String] # @!attribute [rw] invalid_values_allowed # @return [::Boolean] # If invalid values is allowed, the training pipeline will create a # boolean feature that indicated whether the value is valid. # Otherwise, the training pipeline will discard the input row from # trainining data. class NumericArrayTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Treats the column as categorical array and performs following # transformation functions. # * For each element in the array, convert the category name to a # dictionary # lookup index and generate an embedding for each index. # Combine the embedding of all elements into a single embedding using # the mean. # * Empty arrays treated as an embedding of zeroes. # @!attribute [rw] column_name # @return [::String] class CategoricalArrayTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Treats the column as text array and performs following transformation # functions. # * Concatenate all text values in the array into a single text value # using # a space (" ") as a delimiter, and then treat the result as a single # text value. Apply the transformations for Text columns. # * Empty arrays treated as an empty text. # @!attribute [rw] column_name # @return [::String] class TextArrayTransformation include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end end |