Class: Google::Cloud::DataLabeling::V1beta1::PrCurve
- Inherits:
-
Object
- Object
- Google::Cloud::DataLabeling::V1beta1::PrCurve
- Extended by:
- Protobuf::MessageExts::ClassMethods
- Includes:
- Protobuf::MessageExts
- Defined in:
- proto_docs/google/cloud/datalabeling/v1beta1/evaluation.rb
Defined Under Namespace
Classes: ConfidenceMetricsEntry
Instance Attribute Summary collapse
-
#annotation_spec ⇒ ::Google::Cloud::DataLabeling::V1beta1::AnnotationSpec
The annotation spec of the label for which the precision-recall curve calculated.
-
#area_under_curve ⇒ ::Float
Area under the precision-recall curve.
-
#confidence_metrics_entries ⇒ ::Array<::Google::Cloud::DataLabeling::V1beta1::PrCurve::ConfidenceMetricsEntry>
Entries that make up the precision-recall graph.
-
#mean_average_precision ⇒ ::Float
Mean average prcision of this curve.
Instance Attribute Details
#annotation_spec ⇒ ::Google::Cloud::DataLabeling::V1beta1::AnnotationSpec
Returns The annotation spec of the label for which the precision-recall curve calculated. If this field is empty, that means the precision-recall curve is an aggregate curve for all labels.
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
# File 'proto_docs/google/cloud/datalabeling/v1beta1/evaluation.rb', line 136 class PrCurve include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # @!attribute [rw] confidence_threshold # @return [::Float] # Threshold used for this entry. # # For classification tasks, this is a classification threshold: a # predicted label is categorized as positive or negative (in the context of # this point on the PR curve) based on whether the label's score meets this # threshold. # # For image object detection (bounding box) tasks, this is the # [intersection-over-union # # (IOU)](/vision/automl/object-detection/docs/evaluate#intersection-over-union) # threshold for the context of this point on the PR curve. # @!attribute [rw] recall # @return [::Float] # Recall value. # @!attribute [rw] precision # @return [::Float] # Precision value. # @!attribute [rw] f1_score # @return [::Float] # Harmonic mean of recall and precision. # @!attribute [rw] recall_at1 # @return [::Float] # Recall value for entries with label that has highest score. # @!attribute [rw] precision_at1 # @return [::Float] # Precision value for entries with label that has highest score. # @!attribute [rw] f1_score_at1 # @return [::Float] # The harmonic mean of {::Google::Cloud::DataLabeling::V1beta1::PrCurve::ConfidenceMetricsEntry#recall_at1 recall_at1} and {::Google::Cloud::DataLabeling::V1beta1::PrCurve::ConfidenceMetricsEntry#precision_at1 precision_at1}. # @!attribute [rw] recall_at5 # @return [::Float] # Recall value for entries with label that has highest 5 scores. # @!attribute [rw] precision_at5 # @return [::Float] # Precision value for entries with label that has highest 5 scores. # @!attribute [rw] f1_score_at5 # @return [::Float] # The harmonic mean of {::Google::Cloud::DataLabeling::V1beta1::PrCurve::ConfidenceMetricsEntry#recall_at5 recall_at5} and {::Google::Cloud::DataLabeling::V1beta1::PrCurve::ConfidenceMetricsEntry#precision_at5 precision_at5}. class ConfidenceMetricsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end |
#area_under_curve ⇒ ::Float
Returns Area under the precision-recall curve. Not to be confused with area under a receiver operating characteristic (ROC) curve.
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
# File 'proto_docs/google/cloud/datalabeling/v1beta1/evaluation.rb', line 136 class PrCurve include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # @!attribute [rw] confidence_threshold # @return [::Float] # Threshold used for this entry. # # For classification tasks, this is a classification threshold: a # predicted label is categorized as positive or negative (in the context of # this point on the PR curve) based on whether the label's score meets this # threshold. # # For image object detection (bounding box) tasks, this is the # [intersection-over-union # # (IOU)](/vision/automl/object-detection/docs/evaluate#intersection-over-union) # threshold for the context of this point on the PR curve. # @!attribute [rw] recall # @return [::Float] # Recall value. # @!attribute [rw] precision # @return [::Float] # Precision value. # @!attribute [rw] f1_score # @return [::Float] # Harmonic mean of recall and precision. # @!attribute [rw] recall_at1 # @return [::Float] # Recall value for entries with label that has highest score. # @!attribute [rw] precision_at1 # @return [::Float] # Precision value for entries with label that has highest score. # @!attribute [rw] f1_score_at1 # @return [::Float] # The harmonic mean of {::Google::Cloud::DataLabeling::V1beta1::PrCurve::ConfidenceMetricsEntry#recall_at1 recall_at1} and {::Google::Cloud::DataLabeling::V1beta1::PrCurve::ConfidenceMetricsEntry#precision_at1 precision_at1}. # @!attribute [rw] recall_at5 # @return [::Float] # Recall value for entries with label that has highest 5 scores. # @!attribute [rw] precision_at5 # @return [::Float] # Precision value for entries with label that has highest 5 scores. # @!attribute [rw] f1_score_at5 # @return [::Float] # The harmonic mean of {::Google::Cloud::DataLabeling::V1beta1::PrCurve::ConfidenceMetricsEntry#recall_at5 recall_at5} and {::Google::Cloud::DataLabeling::V1beta1::PrCurve::ConfidenceMetricsEntry#precision_at5 precision_at5}. class ConfidenceMetricsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end |
#confidence_metrics_entries ⇒ ::Array<::Google::Cloud::DataLabeling::V1beta1::PrCurve::ConfidenceMetricsEntry>
Returns Entries that make up the precision-recall graph. Each entry is a "point" on
the graph drawn for a different confidence_threshold
.
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
# File 'proto_docs/google/cloud/datalabeling/v1beta1/evaluation.rb', line 136 class PrCurve include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # @!attribute [rw] confidence_threshold # @return [::Float] # Threshold used for this entry. # # For classification tasks, this is a classification threshold: a # predicted label is categorized as positive or negative (in the context of # this point on the PR curve) based on whether the label's score meets this # threshold. # # For image object detection (bounding box) tasks, this is the # [intersection-over-union # # (IOU)](/vision/automl/object-detection/docs/evaluate#intersection-over-union) # threshold for the context of this point on the PR curve. # @!attribute [rw] recall # @return [::Float] # Recall value. # @!attribute [rw] precision # @return [::Float] # Precision value. # @!attribute [rw] f1_score # @return [::Float] # Harmonic mean of recall and precision. # @!attribute [rw] recall_at1 # @return [::Float] # Recall value for entries with label that has highest score. # @!attribute [rw] precision_at1 # @return [::Float] # Precision value for entries with label that has highest score. # @!attribute [rw] f1_score_at1 # @return [::Float] # The harmonic mean of {::Google::Cloud::DataLabeling::V1beta1::PrCurve::ConfidenceMetricsEntry#recall_at1 recall_at1} and {::Google::Cloud::DataLabeling::V1beta1::PrCurve::ConfidenceMetricsEntry#precision_at1 precision_at1}. # @!attribute [rw] recall_at5 # @return [::Float] # Recall value for entries with label that has highest 5 scores. # @!attribute [rw] precision_at5 # @return [::Float] # Precision value for entries with label that has highest 5 scores. # @!attribute [rw] f1_score_at5 # @return [::Float] # The harmonic mean of {::Google::Cloud::DataLabeling::V1beta1::PrCurve::ConfidenceMetricsEntry#recall_at5 recall_at5} and {::Google::Cloud::DataLabeling::V1beta1::PrCurve::ConfidenceMetricsEntry#precision_at5 precision_at5}. class ConfidenceMetricsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end |
#mean_average_precision ⇒ ::Float
Returns Mean average prcision of this curve.
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
# File 'proto_docs/google/cloud/datalabeling/v1beta1/evaluation.rb', line 136 class PrCurve include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # @!attribute [rw] confidence_threshold # @return [::Float] # Threshold used for this entry. # # For classification tasks, this is a classification threshold: a # predicted label is categorized as positive or negative (in the context of # this point on the PR curve) based on whether the label's score meets this # threshold. # # For image object detection (bounding box) tasks, this is the # [intersection-over-union # # (IOU)](/vision/automl/object-detection/docs/evaluate#intersection-over-union) # threshold for the context of this point on the PR curve. # @!attribute [rw] recall # @return [::Float] # Recall value. # @!attribute [rw] precision # @return [::Float] # Precision value. # @!attribute [rw] f1_score # @return [::Float] # Harmonic mean of recall and precision. # @!attribute [rw] recall_at1 # @return [::Float] # Recall value for entries with label that has highest score. # @!attribute [rw] precision_at1 # @return [::Float] # Precision value for entries with label that has highest score. # @!attribute [rw] f1_score_at1 # @return [::Float] # The harmonic mean of {::Google::Cloud::DataLabeling::V1beta1::PrCurve::ConfidenceMetricsEntry#recall_at1 recall_at1} and {::Google::Cloud::DataLabeling::V1beta1::PrCurve::ConfidenceMetricsEntry#precision_at1 precision_at1}. # @!attribute [rw] recall_at5 # @return [::Float] # Recall value for entries with label that has highest 5 scores. # @!attribute [rw] precision_at5 # @return [::Float] # Precision value for entries with label that has highest 5 scores. # @!attribute [rw] f1_score_at5 # @return [::Float] # The harmonic mean of {::Google::Cloud::DataLabeling::V1beta1::PrCurve::ConfidenceMetricsEntry#recall_at5 recall_at5} and {::Google::Cloud::DataLabeling::V1beta1::PrCurve::ConfidenceMetricsEntry#precision_at5 precision_at5}. class ConfidenceMetricsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end |